FRANCESCA BOCCUNI On the Consistency of a
Plural Theory of Frege’s
Grundgesetze

Abstract. PG (Plural Grundgesetze) is a predicative monadic second-order system
which is aimed to derive second-order Peano arithmetic. It exploits the notion of plural
quantification and a few Fregean devices, among which the infamous Basic Law V. In this
paper, a model-theoretical consistency proof for the system PG is provided.
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Overview

The aim of the paper is to provide a model-theoretic consistency proof for
the predicative second-order system PG, which employs plural quantifica-
tion and a formulation of Frege’s infamous Basic Law V. This system is
of foundational interest because, unlike the consistent fragments of Frege’s
Grundgesetze so far provided,! it interprets second-order Peano arithmetic,
as explained in [2]. The consistency proof is crucially based on [8].

1. The Theory PG

The language £ of the theory PG consists of

(i) an infinite list of singular individual variables z, vy, 2, ...;

(ii) an infinite list of plural individual variables X, Y, Z, ..., that vary plu-
rally over the individuals of the first-order domain;

an infinite list of monadic concept variables F, G, H, ...;

the logical constants =, =, =;

)
)
(v) existential quantifiers 3 for every kind of variables;
) the constant 7;

)

the abstraction function {:}.
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The atomic formulee of £ are:
(viii) a = b;
(ix) anY;?
(x) Pa,

where a and b are metavariables for the terms of .Z, Y is a metavariable
for plural variables and P is a metavariable for concept variables. Formulae
of kind (ix) express what I may call plural reference, meanwhile formulse of
kind (x) express regular predication. Primitive existential quantification for
every kind of variables is available. Universal quantification for every kind
of variables can be defined in the obvious manner. The semantic clauses
for the formulae of .% will not be provided here.? It is worth mentioning,
though, that plural quantification is meant to be interpreted by Boolos’s
plural semantics as in [3], whereas second-order quantification is interpreted
as varying over a domain of (Fregean) concepts.
Together with the singular variables z, y, z, ..., the terms of £ are:

(xi) an infinite list of extension-terms of the form {z : ¥ (z)},

where 9 (z) is a formula of .Z containing neither bound concept variables
nor free plural variables, with z as the designated variable. It may contain,
though, free concept variables, bound plural variables, and both free and
bound singular variables. Also, nested extensions may appear in extension-
terms.

Two Comprehension Principles are provided: a Plural Comprehension
Principle

PLC (3X)(vy) (ynX > 6()),

where ¢(x) does not contain X free; and a Predicative Comprehension
Principle

[PRC] (3F)(var) (Fir > 3(x)),

where ¥ (x) contains neither F' free, nor free plural variables, nor bound
concept variables. However, ¢ (x) may contain both free concept variables
and bound plural variables. A schematic formulation of Basic Law V is also
among the axioms:

Vi {z (@)} ={z : x(2)} & Va(¥(z) & x(2)).

Clearly, ¥ (x) and x(x) are subject to the restrictions mentioned earlier
concerning extension-terms. Axiom V guarantees the existence of Dedekind-
infinitely many first-order individuals in the domain. This is crucial to guar-
antee that Peano axioms may be derived in PG.

2To be read ‘a is among the Ys’.
3Detailed semantics for .# shall be found in [2].
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It is worth noticing that the restrictions on the right-hand side formula
of PRC are exactly the same restrictions imposed on the formulse permit-
ted in the extension-terms. This guarantees that in PG, for every concept,
there is the corresponding extension and that every extension is defined by
a concept.4

Notice that, strictly speaking, .Z is monadic. Nevertheless, terms like
(z,y) for ordered pairs can be introduced by the usual Wiener-Kuratowski
definition and they will have denotations assigned already in Section 4.1.1:
in fact, both the notions of singleton and unordered pair are definable in .Z.
Thus, .Z is provided with polyadic expressive capacity.’

In PG, natural numbers may be inductively defined as extension-terms,
as

Definition 1. 0 =4 {2 : = # z};
Definition 2. 1 =4 {2 : 2 = 0};
Definition 3. 2 =4 {z : z = 1};

and so on. In general, the successor of a number is its singleton. A
plurality X is said to be inductive whenever it contains 0 and is closed
under successor. That such a plurality exists is guaranteed by PLC, which
the formula znX < VY (0nY A (xnY — {x}nY)) is a valid instance of. The
usual definition of the set of natural numbers may be given in terms of
pluralities. First, a concept N is defined and, secondly, the corresponding
extension w is introduced:

Definition 4. Nz =4 (VY)(Y is inductive — a2nY’);
Definition 5. w =4 {z : Nz}.

The following formulations of second-order Peano axioms are derivable
in PG, where the singular variables  and y are restricted to w:

Theorem 6. NO;

4This is slightly different from Heck’s predicative system, as Heck imposes no restric-
tions on extension-terms and consequently on Basic Law V. Nevertheless, if unrestricted
Basic Law V were admitted in PG, the resulting system PG* would be inconsistent. This
is easily seen by introducing a plurality X defined by the instance znX <> = ¢ = of PLC
and noticing that any resulting extension {z : znX} could be used to derive a plural ver-
sion of Russell’s paradox, a definition of membership d la Frege being easily provided as
x€y=q IF(y={2: Fz} A Fzx).

5See [2].
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Theorem 7. (Vz)({z} #0);

Theorem 8. (Vzy)(y = {z});

Theorem 9. (Vay)({z} = {y} =z =v);

Theorem 10. (VX)(0nX A (Vo)(znX — {z}nX) — (Vo)(2nX)).b

)
)

PG is significantly stronger both than [7], [8], and [13], as these fragments
of Frege’s Grundgesetze are very unlikely to interpret second-order Peano
arithmetic.” This latter fact seems to put a serious limitation on the recovery
of Frege’s original programme. Nonetheless, that PG is sufficiently strong to
derive (the plural version of) second-order Peano axioms seems to suggest
that, to some extent, Frege’s programme is not doomed to failure after all.
In this perspective, though, the philosophical issues concerning whether this
present system is logicistically acceptable are very important.®

2. Plural Logic vs Second-Order Logic

It may sound unsurprising that second-order Peano arithmetic is inter-
pretable in PG. Any theory that both guarantees Dedekind-infinitely many
individuals and employs full second-order comprehension will do it, after all.
And, clearly, PG gets the former from Basic Law V and the latter from PLC.
Nevertheless, leaving aside the exact mathematical strength of PG,? this re-
sult is not trivial on the grounds of the threat of inconsistency, to the extent

SFor further details on PG, see [2].

"See [4], Sections 2.1 and 2.6.

8See [2].

T claim that PG is at least as strong as third-order Peano arithmetic. Consider,
first, that second-order Peano arithmetic is equi-interpretable with ZF~, i.e. first-order
Zermelo set-theory without the axioms of power-set, replacement, and choice; and third-
order Peano arithmetic is equi-interpretable with ZF~ + p(w), where the power-set axiom
is replaced by a weaker axiom stating the existence of the power-set of w. On this, see
[4] 70-71. Now, since PG interprets second-order Peano arithmetic, PG clearly is at least
as strong as ZF~. Consider now that in PG pluralities may mimic functions. Under the
definitions both of natural numbers as Von Neumann ordinals and exponentiation z¥ as the
extension of all pluralities of ordered pairs whose first element belongs to y and the second
to x, in PG we may define the extension 2% as the extension of all pluralities of ordered pairs
whose first element is a natural number and the second is either 0 or 1, for 2 =4 {0,1}.
Under the assumption of classical logic, this is equivalent to the existence of the power-set
of w, where each subset of w corresponds uniquely to a plurality of ordered pairs whose
first element z belongs to w and the second is 1 if, and only if, 2 € w; and 0 otherwise.
This does not seem to be available in Burgess’s theory, on the grounds that neither w is
definable in it nor bound concept variables - neither predicative nor impredicative - are
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that the problematic assumptions leading Frege’s Grundgesetze to contra-
diction, i.e. (i) full second-order logic and (ii) the existence of an extension
for every concept, are incorporated in PLC and Basic Law V respectively.

Some found a way to bring (i) and (ii) together consistently, through the
introduction of a ‘safety zone’ between the defining power of full second-
order logic and the existential assumption concerning extensions, which on
the one hand avoids the inconsistency and, on the other, prevents the re-
sulting system from too narrow a regimentation. Such a solution is, for
instance, proposed by [4]. It consists of a three-sorted second-order system
with a round of second-order variables X,Y, Z, ..., varying over concepts
in general,!” and a further round of second-order variables X% Y0 20 .. .,
varying over ‘simple’ concepts. Burgess tries to implement the simplicity
requirement modelled on Russell’s intuition that only ‘simple’ propositional
functions have extensions. ‘Simple’ may be taken to mean ‘predicative’.
Burgess’s theory, thus, contains: a full impredicative comprehension axiom
for general concepts [Impr-CA] (3X)(Vz)(Xx < ¢(z)),

where ¢(z) does not contain X free; a restricted comprehension axiom
for simple concepts

[Pred-CA] (3X°)(Vz)(X 2 < ¥(x)),

where (x) contains neither X" free nor bound simple concept variables
nor bound nor free general concept variables.'! Furthermore, Basic Law V
is among the axioms, where only ‘simple’ concepts have extensions.'? The

allowed in extension-terms. PG would thus be at least as strong as ZF~ + p(w), and
consequently at least as strong as third-order Peano arithmetic. Nevertheless, what the
exact mathematical strength of PG is, though a very intriguing issue, is material for a
further article. Remarks on this topic may be found in [2].

107’11 call these variables general concept variables from now on, not to mean that they
vary over some special kind of concepts - general concepts - but rather to recall that they

vary over concepts indiscriminately.

"This theory is Heck’s predicative second-order fragment of Grundgesetze (PV), as
presented in [8], augmented with second-order logic (SOL), and it is equi-consistent with
second-order Peano arithmetic. Burgess does not explicitly mention the restrictions on
Pred-CA concerning general concept variables, but these are indeed necessary, since oth-
erwise paradox would be derivable, as the domain of simple concepts is a subdomain of
the domain of general concepts.

12Gee [4] 119: ‘An alternative approach would be to have, in addition to variables
X,Y,Z, ...for concepts in general, special variables X° Y° Z° .. for ‘simple’ ones, with
a restricted version of comprehension for these, and only these allowed to have extensions.
(...) Again if ‘simple’ is understood as predicative, we will get something familiar, PF,
but again with full, impredicative second-order logic’, where PF is predicative Frege set
theory, i.e. a first-order set theory with a predicative axiom of separation and the axiom
of extensionality. This latter is easily obtained from PV. See [4] 87-91.
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introduction of predicative comprehension and the consequent restrictions
on Basic Law V avoid the inconsistency, only if impredicative second-order
quantification does not interact with extensions at all. This sounds like
throwing out the baby with the bath water. [4], in fact, interprets second-
order Peano arithmetic, as augmenting PV with SOL provides enough de-
ductive capacity to recover full second-order induction, but it requires such
restrictions in order to avoid inconsistency that it is not able to derive de-
sirable theorems, like the one asserting the existence of the extension of all
natural numbers.

PG, unlike [4], operates with two kinds of second-order variables whose
domains are distinct, rather than one a subdomain of the other. This feature
of PG is crucial as it allows concepts to be defined from full second-order
(plural) quantification in PRC. So, to some extent, through Basic Law V,
impredicative second-order logic is interacting with the existential assump-
tion (ii). This equips PG with a strength that is not available to Burgess’s
system, but at the same time clearly demands for a consistency proof.

As for PG’s mathematical strength, in fact, notice that the restrictions
on PRC do not prevent PG from proving interesting theorems like the exis-
tence of the extension of the concept of Number. The extension containing
all natural numbers, in fact, may be explicitly defined in PG, whereas it can-
not be in [4].12 In general, in the language of PG there are extension-terms
which cannot be in Burgess’s language,'* given the restrictions that need
to be imposed on this latter. Given the formulse permitted in PRC, terms
containing Y1-formulze of the form {z : (3X)(znX)} are allowed in PG,
beside the X{-terms {z : Fa}. These %}-terms need to be assigned deno-
tations. PG, thus, is not logically identical with a predicative second-order
system bluntly augmented with full second-order logic, rather it is signif-
icantly stronger. For this reason, there is no obvious way to prove PG’s
consistency through equi-consistency with [4] or any other similar system,
but PG’s consistency should be provided through some other means.

As for the consistency demand, notice that the model here presented
is quite intuitive. Nevertheless, its importance lies exactly in the fact that
its existence proofs PG’s consistency. PG, in fact, lets the two problematic
assumptions (i) and (ii) interact with each other to the extent that pluralities
interact with extensions through plural quantification. Consequently, a proof
is needed that this interaction is safe.

13Gee [4]. Nevertheless, the general concept of Number N may be defined through Impr-
CA. This is the reason why second-order Peano arithmetic is interpretable in PV+SOL.

HSee [4].
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Furthermore, the fact that PG employs both predicative and full plural
comprehension possibly makes this set up rather unfamiliar. For all these
reasons, the demand for a consistency proof is urgent.

3. Philosophical Remarks

Several philosophical issues may arise concerning PG. In what follows, I'll
try to address some of them, partly relying on [2] where I take some of those
issues into closer consideration.

The overall significance of augmenting a consistent predicative fragment
of Frege’s Grundgesetze with plural logic lies both in the mathematical
strength this latter provides to that fragment and in the philosophical mo-
tivations for its application to it. On the one hand, in fact, this result
challenges the claim that, given the mathematical strength of the consistent
fragments mentioned in the introduction, Frege’s logicism is mathemati-
cally unfeasible. On the other, the philosophical motivations underlying PG
should be provided. These are part of a more extensive project of revising
Frege’s logicism through plural logic,'® but some of them shall be investi-
gated in the remainder of this paragraph.

Prima facie, plural variables and second-order variables behave very sim-
ilarly: from a logical point of view, they are both second-order variables,
governed by appropriate comprehension axioms. Nevertheless, regular pred-
ication of the form Pa attributes properties to individuals, whereas plural
reference of the form anX just provides means to consider those individuals
plurally. In this latter case, we do not assume the existence of an entity, e.g.
the plurality X, containing some first-order individuals, rather we employ
a linguistic tool, i.e. plural quantification, in order to talk of first-order in-
dividuals in a way which is not available to usual first-order logic. As for
first-order and plural quantification, we do not maintain singular reference,
on the one hand, while multiplying the sorts of entities, i.e. regular first-
order individuals as opposed to pluralities, on the other; rather, we multiply
the sorts of reference, i.e. singular and plural, while maintaining just one
sort of entities, i.e. first-order individuals. Plural variables and second-order
variables may be taken to do approximately the same job logically,'® but not

15Gee [2], in particular as far as a motivation for predicativism about concepts is con-
cerned.

16This may be disputed, though, on the grounds of some results of mathematical
strength. Though plural logic and second-order logic are inter-definable, the argument
from the previous section seems to show that at least some applications of those two
logics may lead to different mathematical results. So, to some extent, plural logic and
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ontologically. Thus, one reason for allowing both in PG is that we can take
advantage of full second-order definability and have it interacting safely with
Basic Law V, without unwanted ontological commitment. Another reason
for having both kinds of quantification is that having usual second-order vari-
ables allows us to hold the Fregean assumption that extensions are defined
by concepts, since in PG’s intended interpretation second-order variables
vary over a domain of concepts.!” Clearly, this assumption is governed by
the restrictions respectively on extension-terms and on the PRC-permissible
formuleae. This, together both with the mathematical strength plural logic is
supposed to provide to PG and its ontological parsimony, may be of some
interest to the Fregean. Notice that this is not to claim that Frege himself
would be happy with a distinction between concepts and pluralities. There
are indeed several arguments that he possibly would not.'® Still, anyone
engaged in the enterprise of vindicating Basic Law V from unjust ostracism
(for instance on the grounds of the so-called ‘bad company problem’, or
inconsistency) may find these results interesting.'?

A further issue concerns whether we have linguistic evidences from nat-
ural language that we are allowed to use both second-order and plural pred-
ication. This is a rather delicate topic: different authors have very different
conceptions of the roles plurals and predicates play in natural language,
and their possible interactions. It cannot be rejected, though, that plurals
are in systematic use of natural language and they were so, far before we
started to speculate about Fregean concepts. On the other hand, we also use
predicative phrases to attribute properties to individuals. [1] provides some
arguments that in natural language we distinguish between attributive and
predicative expressions, which may be translated respectively into regular
and plural predication:

Many adjectives are used attibutively (in the philosophical sense),
i.e., what they attribute to a particular of which they are predicated
depends on its classification. A good lecture is not good in the same
way as someone’s eyesight may be good; a big mouse is not the size
of a big elephant; and so on. (...) Attributive adjectives cannot

second-order logic do not do the same job even logically.

17See also [2], [7], and [13].

8See, for instance, [6] 93, on Frege’s logical analysis of sentences as constituted by
concept-phrases and arguments: ‘There is no such thing as a “plurality”, which is the
misbegotten invention of a faulty logic: it is only as referring to a concept that a plural
phrase can be understood ...But to say that it refers to a concept is to say that, under
correct analysis, the phrase is seen to figure predicatively.’

9Gee, for instance, [10] and [11].
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easily be used as referring expressions. The property they attribute
depends on the presence of a noun which classifies the particulars to
which they attribute the property. Consequently, if they were used
as referring expressions, without any other concept determining the
property by which they are to pick out the particulars referred to,
it would be indeterminate which property is supposed to determine
their reference. Thus, if they are to be used to refer to particulars, a
noun that specifies which kind of particulars are talked about should
be presupposed. (...) On the other hand, some adjectives are used
predicatively, i.e., the property they attribute is independent of the
classification of the thing to which they attribute it. Such adjectives
can be used as referring expressions. The things they will then denote
are those that have the property that they attribute when used as
adjectives.?°

Consider, for instance, the adjective ‘little’, as in

(1) Children are little.

In order to use ‘little’ as a referring expression in a sentence, we should
accompany it with a noun which classifies the sort of individuals to which
we are ascribing the property of being little. So, instead of saying

(2) The littles will arrive late,

we should be saying
(3) The little brothers/dogs/ones will arrive late,

where the use of ‘one’, though, is either anaphoric on some previous
specification, like in ‘Silly people may be fun, but clever ones are funnier’,
or is colloquial, e.g. the audience knows who has been talked about.?! So,
attributive adjectives are used (only or largely) in a conceptual sense, i.e. as
ascribing properties to individuals.

Consider now the adjective ‘square’. It may be used both into predicate
position, i.e. attributively, as in

(4) Office tables are square;

and as a referring (plural) expression, as in

2071] 33-34.
21See [1] 33.
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(5) My kitchen floor is tiled in large squares of black and white marble.

In (4), I am ascribing the property of having a certain shape to office tables,
so I am using ‘square’ attributively; whereas in (5) I am using ‘square’ as a
noun to refer (plurally) to some objects my kitchen floor is made of.?? To
be sure, I would not be allowed to say ‘My kitchen floor is tiled in larges of
black and white marble’. [1] suggests an account of these features of natural
language which is grounded on plural reference and plural logic, and provides
motivations for using both plural logic and usual second-order logic side by
side.

A further issue concerns whether there are any independent consider-
ations that shape the restrictions imposed on the formulse permissible on
the right-hand side of PRC. As for bound second-order variables, in [2] a
justification for disallowing them in PRC is provided, on the grounds of [5]
and [12]. According to [5] and [12], the possibility of directly referring, at
least ideally, to any object of a Universe of Discourse is presupposed both
by logical and mathematical reasoning, also when non-denumerable domains
are concerned. As a consequence, quantification itself logically presupposes
the ideal possibility of directly referring to each and every element of a do-
main, before we consider those elements through generalisation. [5] and [12]
call this claim the Thesis of Ideal Reference (TIR). From this perspective,
reference to an entity exclusively in terms of a quantification on the domain
it belongs to cannot be allowed, because it is required that we are able to
directly refer to that entity, even if just in an ideal way, on pain of violating
TIR. As a corollary of TIR, in fact, Martino provides a re-formulation of
Russell’s well-known Vicious Circle Principle

VCP* No universe of discourse can contain an element which we can refer
to only through quantification over that universe.?3

TIR and VCP* provide grounded reasons for holding a predicativist stance
as far as the intended interpretation of second-order quantification is over
intensional entities like Fregean concepts, properties, or predicates. In fact,
the only way to access an intensional entity is via language, i.e. through
a formula which expresses it. Now, consider the impredicative comprehen-
sion principle in second-order logic: IFVx(Fz  ¢(z)). Considering the
concept F' means considering the formula ¢(x), under its intended inter-
pretation. Therefore, ¢(z) cannot contain any bound second-order variable

22 All these examples are taken or paraphrased from [1] 33-34.

23Notice that VCP* follows from TIR also when non-denumerable domains are con-
cerned.
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varying over intensional entities, on pain of violating TIR and VCP*. This
clearly requires us to put some restrictions on comprehension for second-
order intensional entities.?* On the other hand, the impredicativity in PLC
is consistent both with TIR and VCP*. In fact, PLC does not impredica-
tively introduce a new entity, e.g. the plurality X. Rather, it just indicates
a multiplicity of individuals that we already have at disposal and, as such,
these individuals are, at least in principle, capable of being referred to before
quantification is used to take them into account, as TIR and VCP* require.
Plural quantification is just a linguistic tool to talk about those individuals
in a way which is not available to regular first-order quantification.?

At the same time, for this very latter reason, free plural variables cannot be
allowed in the formulse permissible on right-hand side of PRC, since using
them in PRC - or in extension-terms, for that matters - would amount to
reify pluralities and identify them with a singular entity, i.e. the concept or
the extension such-and-such.

4. Consistency

In order to show that . has a model, an interpretation for the free vari-
ables has to be fixed and the extension-terms have to be assigned deno-
tations. The domains for singular, concept, and plural variables will be
provided in the following paragraphs. As for the assignment of denotations
to extension-terms, recall that the formulae allowed in extension-terms are
subject to restrictions. In particular, they may contain free predicate vari-
ables, bound plural variables, and bound and free singular variables, but
they can contain neither free plural variables nor bound predicate variables.
On the grounds of these restrictions, I shall first assign denotations to the
extension-terms containing the formulse A;(x), which contain neither con-
cept variables at all, neither free nor bound, nor free plural variables, but
may contain bound plural variables. Secondly, I will get to assign denota-
tions to the extension-terms containing the formulee B;(x), which contain
only free concept variables as second-order variables. Both A;(z) and B;(z)
may contain bound and free singular variables. Nevertheless, these latter
are eliminated via substitution by numerals. All this shall suffice to assign
denotations to all extension-terms of .Z.

#See [2].

2For the very same reason, we may also allow free plural variables in PLC.
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4.1. Domains for Individual Variables

For individual variables T mean both singular individual variables z,y, 2,
..., and plural individual variables X,Y, Z, ...I shall assume that the con-
stants of .Z are denumerably many numerals 7 each of which denotes the
corresponding natural number n, so that the first-order domain is the set
of natural numbers N. If this extended theory is consistent, so will be its
subtheory PG. The assumption on numerals will cover the interpretation
of free singular variables in the proof of consistency. Furthermore, let the
domain for plural variables be the power-set of N, p(N). So a set o belongs
to p(N) if and only if it is a subset of N.

4.1.1. Extension-Terms Not Containing Free Concept Variables

In this Section, I will assign denotations to the extension-terms containing
the formule A;(x).

Define the rank of an extension-term as follows: if A;(z) contains no
extension-term at all, then the rank of {z : A;(z)} is 0. If A;(x) contains
some extension-term and the greatest rank of the terms contained in it is n,
then {x : A;(x)} is rank n+1.

Order all terms in a w X w sequence, where the terms of each rank form
an w sequence and, for any extension-term ¢, each term preceding ¢ is of
rank less than or equal to the rank of ¢. Let J(m,n) be a pairing function
that assigns a natural number to every ordered couple of natural numbers
(m,n) and define the function J%(m,n) as follows: JO(m,n) =4 2J(m,n).

By induction, it has to be shown that, the first term in the sequence has a
denotation and, for any term ¢, if all the terms preceding ¢ have denotations
then t has a denotation.

The inductive basis can be stipulated: let {z :  # x} be the first term
of the sequence and assign the number J°(0,0) to it as its denotation.

Let t be some term in the ordering and, by induction hypothesis, assume
that we have assigned denotations to every term prior to ¢.

Assume moreover that, if the terms {x : Ax(x)} and {x : A, (x)} precede
t in the ordering, then they have the same denotation if, and only if, Ay (z)
and A,,(x) are equivalent under the interpretation of individual variables
described at the beginning of 4.1, if there are any in Ag(z) and A,,(x) (i.e.
for every term n, Ay(m) is true if and only if A,,(7) is, under I).

Let t be {z : A;(z)}. Assign the denotation of the term u to it as its
denotation, if u is some prior term {z : A;(z)} such that A;(z) is equivalent
to A;(x). If there is no such term, assign the number J%(m,n) to t as its
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denotation, such that m is the rank of ¢ and n is the smallest number such
that J%(m, k) has not yet been assigned as denotation to some extension-
term (basically, J°(m, k) should be still available in the sequence).

Check now that, if {z : Ai(z)} and {z : A,,(x)} precede or are identical
with ¢, then Ag(z) and A,,(z) are equivalent if, and only if, {x : Ag(x)}
and {z : A,,(x)} have been assigned the same denotation. The case where
they precede t has been covered already by the previous assumptions. Now
assume t = {z : Ag(x)}, thus the denotations of the terms {z : A;(x)}
and {x : Ag(z)} are identical. Then, A;(x) is equivalent to A,,(x) if and
only if {z : A;(x)} and {z : A,,(z)} are assigned the same denotation, by
construction through the function J°(m,n).

4.2. Domain for Concept Variables

Let m(N) be the set of all subsets of N definable by an arbitrary PRC-
permissible formula 1 (z), that is, the set 3 such that, for all n € N, ¢(n)
is true if, and only if, n € 5. The formula ¥ (x) contains neither bound
concept variables nor free plural variables. However, it may contain free
concept variables and bound plural variables. Obviously, this construction
ensures that m(N) C p(N).

4.2.1. Extension-Terms Containing Free Concept Variables

In this Section, I will assign denotations to the extension-terms containing
formulee B;(z). I shall take advantage of the following fact: given an inter-
pretation I of the free variables in a formula ¢ (x) of £, there is a formula
Y'(z) containing no free concept variables at all and no bound plural vari-
ables not contained in ¢ (z) already, which is equivalent to i (z) relative to
the values I assigns to the free variables in 1 (z) and in ¢’ (z).2

For any formula B;(z), there is a formula A;(z) equivalent to B;(x)
under I relative to z, such that it contains no free concept variables nor
bound plural variables at all. In fact, fix an interpretation I and consider a
formula Bj(x) that contains Vi, ..., V,, free concept variables. Let 3}, € 7(N)
be the set assigned to Vj, by I. There are, then, formulee S (z), containing no
free concept variables and no bound plural variables at all, whose extensions
are the f, € m(N). Let A;(z) be the formula resulting from the substitution
of the Vi, by the Si(z) in Bj(x). Then, Aj(z) is equivalent to B;(x) under
I relative to x. If, then, {z : Bj(x)} is the extension-term corresponding to

26Tn short, under I relative to z, as  is the designated variable both in ¢ (z) and ¥’ ().
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B;(x), assign the denotation of {z : A;(x)} to it as its denotation under I.
The denotation of the term {z : A;(z)} has been fixed in Section 4.1.1.
Consider extension-terms containing free concept variables and n extension-Jj

terms nested in them. The nested extension-terms may contain free concept
variables, bound plural variables and extension-terms too. Notice that the
least nested extension-term has been assigned a denotation already as in
the preceding paragraphs. So, if all the extension-terms already assigned
denotations are substituted by their respective denotations (the numerals
for their denotations), the overall extension-term will contain free concept
variables as the only free variables and no extension-terms at all. These
terms have been assigned denotations in the previous paragraph.

4.3. Every Instance of Basic Law V is True in This Model

Every instance of Basic Law V

VI {x: (@)} = {z: x(2)} < Va(d(z) < x(2))

is true in the model presented here. Recall that the formulae v (z) and
Xx(z) are subject to the restrictions concerning extension-terms, i.e. they
contain neither free plural variables nor bound concept variables, whereas
they may contain free concept variables and bound plural variables. It has
to be shown that under every interpretation I of the free concept variables
in ¢ (z) and x(z), the equivalence holds.

From Section 4.2.1, recall that a formula B;(x) containing free concept
variables is equivalent to a formula A;(x) which neither contains concept
variables nor bound plural variables not already in B;(z), under an inter-
pretation I relative to z. Then, to the extension-term {z : B;(x)} the
denotation of the term {x : A;(x)} may be assigned as its denotation, which
was assigned through the w x w sequence in Section 4.1.1.

Suppose that, given an interpretation I relative to x of the free concept
variables, the formula v (x) is equivalent to a formula A;(z) containing = as
its only free variable; and suppose that, under I relative to x, the formula
x(z) is equivalent to a formula Ag(x) with x as its only free variable. Thus,
assign to the terms {x : ¢¥(z)} and {x : x(x)} respectively the denotations
of the terms {z : Aj(x)} and {x : Ay(x)} as their denotations. Both these
latter have been assigned denotations in the w X w sequence. In the w x w
sequence, either {z : Aj(x)} is prior to {z : A(z)} or the other way around.
Suppose {z : Aj(x)} is prior to {z : Ag(z)}, then {z : Aj(x)} and {x :
Ai(z)} have the same denotation if, and only if, Aj;(z) is equivalent to
Ay () under I relative to x. Recall though that A;(x) and Ay(x) are also
equivalent to ¢ (x) and x(x) respectively under I relative to . So, if A;(x)
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is equivalent to Ag(x), ©¥(x) is equivalent to x(x) too, under I relative to x.
Finally, the right-hand side of Basic Law V, Va(¢(z) <> x(x)) is true if, and
only if, ¥ (x) and x(z) are equivalent under I relative to x.

4.4. Every Instance of PRC is True in This Model

The PRC axioms are all instances of

[PRC] 3FVz(Fx < ¥(x)),

where 1 (x) contains neither F' free, nor free plural variables, nor bound
concept variables. It may contain, though, free concept variables and bound
plural variables. It has to be shown that, for every interpretation I of its
free concept variables, the class 5 defined by ¢ (x) under I belongs to 7(N),
where (3 is the class defined by v (x) relative to an interpretation I of the
free concept variables in ¢ (x) if, and only if, for every n, n € g if, and only
if, ¢ (m) is true under I.

Given an interpretation I for the free variables in ¢ (x), there is a formula
A;(z) containing no free concept variables nor bound plural variables not
already in ¥ (x), such that A;(x) is equivalent to v (z) under I relative to z.
As A,(x) is PRC-permissible, the class defined by A;(z) is a class §; such
that 3; € m(N), on the grounds of the definition of 7(N). As ¢(z) and A;(x)
are equivalent, they define identical classes under I relative to . Thus, the
class defined by 1 (z) under I relative to x belongs to w(N).

4.5. Every Instance of PLC is True in This Model

The PLC axioms are all the instances of

[PLC] 3XVy(ynX < é(x)),

where ¢(x) does not to contain X free. ¢(x) may contain both free and
bound plural variables and both free and bound concept variables. It has to
be shown that, for every interpretation I of the free concept and free plural
variables in ¢(z), the class defined by ¢(z) under I belongs to p(N).

First, I’ll show that, for every interpretation I of its free plural variables,
the class defined by ¢(z) under I belongs to p(N). Given an interpretation
I for the free plural variables in ¢(x), there is a formula A;(z) containing
no free plural variables nor bound plural variables not already in ¢(z), such
that A;(z) is equivalent to ¢(z) under I relative to z. Let the class defined
by A;(x) be a class a; € p(N). As ¢(z) and A;(x) are equivalent, they
define the same class; and as the class defined by A;(z) belongs to p(N) by
definition, the class defined by ¢(z) under I belongs to p(N).
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Secondly, I'll consider the free and bound concept variables in ¢(x) and
fix an interpretation I for the free concept variables on the domain 7(N).
Recall that, by definition, 7(N) C ©(N). Since the singular variables z in
¢(x) range over N, obviously the class defined by ¢(x) belongs to p(N).
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