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SUMMARY

Employers often make payment contingent on
performance in order to motivate workers. We used
fMRI with a novel incentivized skill task to examine
the neural processes underlying behavioral re-
sponses to performance-based pay. We found that
individuals’ performance increased with increasing
incentives; however, very high incentive levels led
to the paradoxical consequence of worse perfor-
mance. Between initial incentive presentation and
task execution, striatal activity rapidly switched
between activation and deactivation in response
to increasing incentives. Critically, decrements in
performance and striatal deactivations were directly
predicted by an independent measure of behavioral
loss aversion. These results suggest that incentives
associated with successful task performance are
initially encoded as a potential gain; however, when
actually performing a task, individuals encode the
potential loss that would arise from failure.
INTRODUCTION

It is generally assumed that an increase in financial incentive

provided for work will result in greater performance (Lazear,

2000). The reasoning behind this idea is that larger incentives

increase a worker’s motivation, which, in turn, elicits improved

behavioral output and performance. However, recent behavioral

experiments suggest a more idiosyncratic interplay between

incentives and performance (Ariely et al., 2009): when executing

skilled tasks, individuals’ performance increases as the level

of incentive increases only up to a point, after which greater

incentives become detrimental to performance. Despite the

ubiquity of performance-based incentive schemes in the

workforce, the neural and psychological underpinnings of

the relationship between incentives and performance are not

well understood.
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Although the relationship between financial incentives and

performance has received limited investigation, the paradoxical

relationship between arousal and performance has long been

reported in the psychological literature (Baumeister, 1984;

Martens and Landers, 1970; Wood and Hokanson, 1965; Yerkes

and Dodson, 1908). Keeping in mind that arousal is closely asso-

ciated with motivation, behavioral economics has borrowed

theories from psychology to explain incentive based decrements

(Ariely et al., 2009; Camerer et al., 2005).

These psychological theories attempt to provide explanations

as to why external stressors such as presence of an audience or

social stereotypes might have detrimental effects on behavioral

performance—commonly termed ‘‘choking under pressure’’

(Baumeister, 1984; Beilock et al., 2004). A number of theories

have been proposed to account for the choking phenomenon,

including distraction theories and explicit monitoring theories.

Distraction theories propose that pressure creates a distracting

environment that shifts attentional focus to task-irrelevant

cues, such as worries about the situation and its consequences

(Beilock and Carr, 2001; Lewis and Linder, 1997; Wine, 1971). In

contrast, explicit monitoring theories suggest that the presence

of a stressor acts to wrest control of behavior from a habit-based

instrumental system involved in the implementation of skilled

motor acts, to a more goal-directed instrumental system in

which actions must be selected in a deliberative manner

(requiring on-going monitoring of performance) (Baumeister,

1984; Beilock and Carr, 2001; Beilock et al., 2004; Langer and

Imber, 1979).

At the neural level, very little is known about the

mechanisms underpinning performance decrements in stressful

environments. Mobbs et al. (2009) found that the degree

of subjects’ midbrain activation during a challenging task

was correlated with their performance decrement for large

incentives. They interpreted this neural response as an ‘‘over-

motivation’’ signal for the high rewards associated with success-

ful task performance.

Another region known to play an important role in mediating

interactions between rewards and motor performance is the

ventral striatum. A number of studies have found this region to

be involved in mediating the effects of rewards on increases in

motor performance (Kurniawan et al., 2010; Pessiglione et al.,
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Figure 1. The Incentive-Based Motor Task

(A) At the beginning of each trial participants

were presented with the incentive (e.g., Win $50)

for which they were playing. During incentive

presentation, to initiate the motor task, partici-

pants placed their white hand cursor in the start

position (X) for a random amount of time (2–5 s).

During the task, a target (,) appeared that was

registered to a position 20 cm distal from the start.

To successfully achieve the task, participants had

to place their hand cursor and a mass cursor into

the target within 2 s, while achieving a final velocity

below 0.02 m/s. At the end of the trial they were

shown a message indicating the outcome of

their performance. In the case that a participant

successfully placed the spring-mass in the target,

a positive message was displayed (’’You Won

$50’’); otherwise, the participant was informed of

her negative outcome (‘‘You Lost’’).

(B) The spring-mass task provided us with a well

defined dynamic system. The control input of the

system was (rh) the position of the hand. Thus

movements of the hand resulted in oscillations of

the mass cursor. These equations assumed a zero

rest length of the spring. We defined M0 = 3 kg

and K0 = 120 Nm�1. The state equations for the

system were integrated in real-time to compute

the instantaneous position of the object for each

corresponding position of the hand. Reaching

movements were always initiated with the hand

and object both at rest at the same position. As the

participant began to move her hand the mass

cursor would begin to oscillate. Because the

dynamics of the task were completely novel to

participants they had to learn what hand move-

ments would result in controlled movements of

the mass cursor.

(C and D) After training participants executed

bimodal hand velocity profiles (C) to achieve

smooth bell-shaped velocity profiles of the

mass cursor (D). This allowed the participant

to direct both the hand and mass cursors into

the target.
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2007; Schmidt et al., 2008). The ventral striatum has been impli-

cated in interactions between a Pavlovian system in which

reflexive conditioned responses come to be elicited by a stimulus

that predicts the subsequent delivery of a reward, and an instru-

mental system in which actions are selected flexibly in order to

increase the probability of obtaining reward (Bray et al., 2008;

Dickinson and Balleine, 1994; Talmi et al., 2008). In Pavlovian

to instrumental transfer, instrumental responding for reward

can be enhanced as a result of the presence of a reward predict-

ing Pavlovian stimulus, an effect that is abolished in rodents

following lesions of the ventral striatum (Corbit and Balleine,

2005). Furthermore, fMRI studies of humans have revealed

activity in the ventral striatum during Pavlovian-to-instrumental

transfer (Bray et al., 2008; Talmi et al., 2008). All of the above

studies have focused on the role of ventral striatum in mediating

enhancements in responding, as opposed to decrements. In
contrast, in this study we aimed to investigate the role of the

ventral striatum in mediating response decrements as a function

of large incentives.

To this end, we used a novel motor control paradigm in

conjunction with functional magnetic resonance imaging

(fMRI). Participants performed the highly-skilled motor task

of controlling a virtual spring-mass system (Figure 1B). This

dynamic system was chosen because it was completely novel

to participants, and thus allowed us to evaluate performance

uncorrupted by participants’ previous experiences or expertise

(Dingwell et al., 2002). During trials participants moved both their

hand and the mass from a start position to a target 20 cm away.

A successful trial consisted of both the hand and mass being

placed in the target, subject to velocity constraints.

The experiment took place on two consecutive days. On the

first day of the experiment, participants trained on 500 repeated
Neuron 74, 582–594, May 10, 2012 ª2012 Elsevier Inc. 583
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Figure 2. Behavioral Performance during

Training

Training performance represented as the

percentage of successful trials computed across

participants, for each trial number. Gray dashed

lines indicate the beginning of each session of

training. The bar graph represents the group mean

of the first and last 10 trials of training. A significant

increase in performance was seen after training

(****p < 0.0001).

Neuron

Mechanisms Underlying Performance for Incentives
trials with the spring-mass system. After training, we determined

participants’ rates of success at various target sizes. This thresh-

olding allowed us to tailor standard difficulty levels for each

participant. On the second day, participants performed the

testing phase and were scanned with fMRI while they controlled

the spring-mass system with the purpose of obtaining reward.

While in the magnet, on Day 2 of the experiment, participants

performed trials for a range of incentives (i.e., $0, $5, $25, $50,

$75, $100) and at two difficulty levels (easy and hard).

RESULTS

Behavioral and Neural Responses
Behavioral results from the training phase (Day 1) indicated that

control of the spring-mass system was initially challenging for

participants, but after repeated practice they were able to

increase their performance (Figure 2). In the subsequent

experiment, we found that participants exhibited peak

performance over the range of incentive levels and the bulk of

participants reached peak performance at an incentive level

less than $100 (Figure 3A). This variability in performance

responses for incentives was likely due to participants’ differ-

ences in subjective value for incentives (Ariely et al., 2009). To

account for differences in behavioral performance variance

between participants, each participants’ measures of perfor-

mance were separately standardized (Z-scored) across incen-

tive categories. We computed group statistics on behavioral

responses to incentive using these standardized performance

measures.

To examine participants’ behavioral responses to incentive,

we compared performance at the extremes of incentive with

performance in the middle range of incentives (see the Data

Analysis section for details). At the hard (t(17) = 2.20, p = 0.04)

and combined (t(17) = 2.47, p = 0.02) difficulty levels, and not

the easy level (t(17) = 0.42, p = 0.70), we found that participants

had greater performance in the middle range of incentive as

compared to the extremes of incentive (Figure 3B). We also

found a significant interaction between these incentive cate-

gories and difficulty (F[1,68] = 6.30, p = 0.01). Further dividing

incentive levels (Figure 3C), we found significant main effects

of incentive on performance in the hard condition (F[2,51] =

5.07, p = 0.01), and not the easy (F[2,51] = 2.27, p = 0.11) or

combined (F[2,51] = 2.10, p = 0.13) conditions. We again found
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a significant interaction between incen-

tive categories and difficulty (F[2,102] =

3.60, p = 0.03). In the hard level we found
that participants’ performance improved with increasing incen-

tive level up to a point; beyond this point, further increasing

incentives significantly decreased performance relative to peak

performance (Figure 3C).

Because participants performed this task in the fMRI scanner,

we were able to examine the underlying brain activity involved

in generating their performance responses. Figure 4A shows

that, at the time of incentive presentation, the blood oxygen

level-dependent (BOLD) signal in ventral striatum increased

with the magnitude of incentive (cluster sizes > 100 voxels; right

cluster peak: [x = 12; y = 12; Z = �6], T = 6.51; left cluster peak:

[x = �21; y = 15; Z = �3], T = 5.59). Conversely, we found that

striatal activation during the motor task decreased with respect

to the magnitude of incentive (cluster sizes > 100 voxels; right

cluster peak: [x = 21; y = 9; Z = �9], T = 4.15; left cluster peak:

[x = �18; y = 6; z = �6], Z = 3.89). These results point to a rapid

switching, in the direction of striatal activity, between the

presentation of incentive and subsequent performance of the

motor action. We performed a simulation of our fMRI design to

confirm that the striatal deactivation response was not due to

the BOLD response leaking from the incentive presentation

phase into the motor task phase (Figures S1A and S1B available

online). We also performed an analysis of our data to confirm

that the striatal deactivation was not a physiological artifact

(Figure S1C).

Strikingly, the only brain region commonly active between

the time of incentive presentation (Table S1) and the execution

of the motor task (Table S2) was bilaterally encompassing

ventral striatum (Table S3). Furthermore, additional whole brain

analyses did not reveal any brain regions that were directly

correlated with participants’ parabolic behavioral performance

or interactions between incentive level and task difficulty

(see Supplemental Information for details, Figure S1E). These

analyses provided us with further evidence of the ventral

striatum’s integral role in mediating participants’ responses

during performance for incentives.

The idiosyncratic pattern of striatal activity we observed

(i.e., activation at the time of incentive presentation and

deactivation at the time of action) resembles that reported for

participants experiencing potential monetary gains and losses

(Tom et al., 2007; Yacubian et al., 2006). Tom et al. (2007) found

that ventral striatum was activated by the prospect of gains,

and deactivated by the prospect of losses, and that such
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Figure 3. Behavioral Performance during Scanning

(A) Participants exhibited individual differences in the incentive level at which their performance peaked.

(B) At the hard and combined difficulty levels, and not the easy level, we found that participants had greater performance in the middle range of incentive as

compared to the extremes of incentive.

(C) Dividing incentive levels, at the hard difficulty level, we found that performance improved with increasing incentives up to a point. Further increases in

incentives significantly decreased performance relative to peak performance. Planned comparisons of performance, relative to performance in the middle range

of incentives, found significant decrements at the extremes of incentive for the hard condition (*p < 0.05; **p < 0.01; ***p < 0.001). Error bars represent SEM.

See also Figure S2.

Neuron

Mechanisms Underlying Performance for Incentives
deactivation was strongly correlated with a behavioral measure

of loss aversion.

The findings of Tom et al. (2007), in conjunction with our

results, led us to develop a new hypothesis regarding the role

of ventral striatum in mediating performance decrements for

large incentives: deactivation of ventral striatum during motor

action reflects evaluation of the potential loss (of a presumed

gain) that would arise from failure to successfully achieve the
task. Essentially, larger incentives are framed as larger potential

losses, and as these perceived potential losses increase (in the

highest incentive conditions) they are manifested as perfor-

mance decrements. Because this hypothesis is generated in

part from a ‘‘reverse-inference’’ (Poldrack, 2006), we needed

to obtain additional evidence in order to provide direct empir-

ical support. Our hypothesis led to the following predictions:

(1) striatal deactivation at the time of motor action would
Neuron 74, 582–594, May 10, 2012 ª2012 Elsevier Inc. 585
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Figure 4. fMRI Results

(A) Activity in ventral striatum was positively

correlated with incentive level at the time of

incentive presentation (x = 12; y = 12; z = �6), and

negatively correlated with incentive level at the

time of the motor task (x = 21; y = 9; z = �9). All

contrasts are significant at p < 0.05, small volume

corrected.

(B) Plots of the correlations between neural

sensitivity and mean corrected performance at

the $100 incentive level (for the combined diffi-

culty) for each participant. Error bars denote SEM.

Participants’ performance was mean corrected

to adjust for differences in overall performance

between participants.

See also Figure S1 and Tables S1, S2, and S3.
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predict the extent of individuals’ decrements in behavioral

performance; (2) activity in ventral striatum during motor action

would relate to an individual’s behavioral loss aversion (i.e.,

the more loss averse a participant, the greater her ventral stria-

tal deactivation during motor action); and (3) a participant’s

degree of behavioral loss aversion would be predictive of her

propensity to exhibit performance decrements for large incen-

tives, as well as the level of incentive that resulted in peak

performance.

Loss Aversion Predicts Neural Responses to Incentives
To test the first prediction, we examined the extent to which

a participant’s decrease in performance at the highest incentive

level was related to her neural sensitivity to incentive. For this

analysis we performed correlations between participants’

behavioral performance at the $100 incentive level and activity

in the striatum. Neural sensitivity to incentive was defined as

the slope of the relationship between BOLD percent signal

change and incentive level; a positive neural sensitivity corre-

sponded to neural activation, whereas a negative activity was

indicative of deactivation.

In keeping with the first prediction, we found significant

correlations between levels of striatal deactivation at the time

of the motor task and performance decrements at the $100

incentive level (Figure 4B; r = 0.70; p = 0.001). Critically, no sig-

nificant relationship between neural sensitivity and performance

was found at the time of incentive presentation (r = 0.22; p =

0.38). Using a cross-product term in a multiple regression

model, we also found a significant interaction between neural

sensitivity during incentive presentation and the motor task

and performance (statistics for interaction term: t(14) = 4.18;

p = 0.001).
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To test the second prediction we re-

called a subset of participants (n = 12)

who originally participated in these ex-

periments and tested them on a behav-

ioral loss aversion task. This task was

the same as that used by Tom et al.

(2007), and allowed us to determine a

measure l, indicating how heavily partic-

ipants weighed losses compared to
gains. This subset of participants was found to have a median

l estimate of 2.09 (interquartile range [IQR] 1.09). These values

of l are similar to those reported in previous studies (Bateman

et al., 2005; Gachter et al., 2007; Tom et al., 2007; Tverskey

and Kahneman, 1992). We found significant correlations

between increasing behavioral loss aversion and striatal

deactivation during motor action (Figure 5A; r = 0.60; p =

0.04; Figure S3). Importantly, we did not find a significant corre-

lation between neural sensitivity during incentive presentation

and participants’ behavioral loss aversion (r = 0.30; p = 0.34).

We also found a significant interaction between neural sensi-

tivity during incentive presentation and the motor task and

loss aversion (statistics for interaction term: t(8) = 2.40 p =

0.05). These results illustrate that differences in behavioral

loss aversion were indicative of neural responses during motor

action.

Loss Aversion Predicts Behavioral Responses
to Incentives
To test the third prediction, and to reach an adequate sample

size to test behavioral correlations, we included an additional

20 participants who performed the motor task, the behavioral

loss aversion task, and a risk aversion task outside the fMRI

scanner. A group comprised of both the subset of imaging

participants (n = 12), and the additional participants (n = 20)

had a median l estimate of 2.10 (IQR 0.85). We found a highly

significant (r = 0.53; p = 0.002) relationship between increasing

behavioral loss aversion and the proclivity to show perfor-

mance decrements in the hard difficulty level (Figure 5B), but

not in the easy difficulty level (r = 0.22; p = 0.23). We also found

a significant relationship (r = 0.36; p = 0.04) between

decreasing behavioral loss aversion and the level of incentive
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Figure 5. Loss Aversion across Participants

(A) The correlation between behavioral loss aver-

sion for each participant and their neural sensitivity

to incentive (at the time of themotor task). A robust

regression revealed that a candidate outlier did

not have an impact on the correlation between

neural sensitivity and loss aversion. This candidate

outlier was not in fact an outlier as it was within

2 SD of themean (l = 0.94; groupmean ± 2*SD, l =

2.22 ± 1.44). We also performed an additional

fMRI study that duplicated the relationship

between neural sensitivity and loss aversion. See

also Figure S3.

(B and C) Plots of the correlations between (B)

behavioral loss aversion and mean corrected

behavioral performance at the $100 incentive level

(for the hard difficulty level) (C), and incentive

resulting in peak performance (for the hard diffi-

culty level) (C). Plots (B) and (C) contain data from

the initial (n = 12) and the follow-up (n = 20)

experiments.

(D) Behavioral performance from the follow-up

experiment (n = 20, for the hard difficulty level). For

this analysis we separated participants into tertiles

based on the extent of their loss aversion. We

found a main effect of incentive in the lower

(F[2,18] = 5.38, p = 0.02) and upper (F[2,18] = 4.29,

p = 0.04) tertile of loss aversion. Planned

comparisons of performance, relative to perfor-

mance in the middle range of incentives, found

significant decrements (*p < 0.05; **p < 0.01) at the

extremes of incentive for participants in the upper

tertile and not in the lower tertile. Error bars

represent SEM.
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resulting in peak behavioral performance in the hard difficulty

level (Figure 5C), but not in the easy difficulty level (r = 0.24;

p = 0.19). Those participants with greater behavioral loss aver-

sion exhibited peak performance at lower incentive levels and

more impaired performance for high incentives. The additional

group of participants (n = 20) exhibited a wide range of l’s and

separating these participants based on the degree of their loss

aversion, we found that those that were less loss averse

followed a monotonic response to incentives, whereas more

loss averse participants exhibited the paradoxical response to

incentives (Figure 5D). These results provide evidence that

participants frame their performance for incentives, during
Neuron 74, 582–
highly skilled tasks, in terms of the loss

of a presumed gain that would arise

from failure. Moreover, this encoding of

loss aversion drives participants’ behav-

ioral performance for incentive.

Loss aversion represents a tendency to

value lossesgreater thanequalmagnitude

gains. Risk aversion, on the other hand,

is a more general aversion to increased

variance in potential gains or losses. To

ensure a loss aversion-based hypothesis

and not a general aversion to risk was

responsible for our findings, we had
participants in the follow-up experiment (n = 20) perform another

decision-making task inwhich theymade choices regarding risky

gambles that did not include potential losses. Using participants’

responses from this task we were able to calculate a measure

a that represented their risk aversion. Participants had a median

a estimate of 0.83 (IQR0.20), indicating that theywere on average

risk averse. Importantly, no significant correlations were found

between our behavioral measures of performance and risk aver-

sion (Table 1). This provides further evidence that an individual’s

incentive resulting in peak performance and her performance

decrements for large incentives are due specifically to loss

aversion.
594, May 10, 2012 ª2012 Elsevier Inc. 587



Table 1. Correlations between Prospect Theory Parameters and Performance for Participants in the Follow-Up Experiment

Correlation with Loss Aversion (l); n = 20 Correlation with Risk Aversion (a); n = 20

Performance

at $100

Incentive Resulting

in Peak Performance

Performance

at $100

Incentive Resulting

in Peak Performance

Easy difficulty r = 0.31 r = 0.26 r = 0.17 r = 0.22

p = 0.18 p = 0.27 p = 0.47 p = 0.35

Hard difficulty r = 0.61 r = 0.44 r = 0.18 r = 0.10

p = 0.004 p = 0.05 p = 0.45 p = 0.67

Each element of this table indicates the significance of a correlation between participants’ loss aversion and risk aversion and performance measures

at each difficulty level.
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A Prediction Error Model Does Not Describe Neural
Responses to Incentives
Given that the striatum is also known to encode signals resem-

bling a rewarded prediction error (McClure et al., 2003; O’Doh-

erty et al., 2003; Pagnoni et al., 2002), we performed a simulation

to determine if the deactivations observed during the motor task

could be elicited as a byproduct of prediction error signaling. For

this analysis we considered a temporal difference (TD) model of

prediction error (PE), where a prediction error d was generated

from a difference between a predicted value V(t) at time t and

a predicted value V(t + 1) at time t + 1 (Sutton and Barto, 1990):

d=Vðt + 1Þ � VðtÞ:

In our experiment, participants trained the day before the re-

warded portion of the experiment and thus generated an expec-

tation of their probability of success given a presented target

size, and an average probability of success over all trials. We

will assume that participants had, through training, learned the

probability of success on easy trials Peasy = 0.80, and on hard

trials Phard = 0.60. Therefore, on average Pcombined = 0.70. With

these probabilities of success we can generate the PE signals

that would occur through the course of a trial and examine if

these PEs match our neural data.

At the beginning of a trial the predicted reward V(t0) is zero

for each time t until the time of incentive presentation tpresentation.

The initial presentation of incentive results in a positive prediction

error d = Pcombined*V(tpresentation) � 0. At tpresentation participants

are not given any cues regarding trial difficulty, therefore their

probability of success is Pcombined. These expectations result in

positive prediction errors that increase with the magnitude of

the incentive offered (Figure 6B). It can be seen that this PE

response mirrors the striatal activations we observed during

incentive presentation.

When the motor task begins at tmotor, participants update

their prediction error depending on the difficulty of the trial:

easy trials d = Peasy*V(tmotor)� Pcombined*V(tpresentation); hard trials

d = Phard*V(tmotor) � Pcombined*V(tpresentation). This results in

different PE responses for the different trial difficulties (Fig-

ure 6C). Easy trials result in positive PEs that scale with the

magnitude of the incentive, whereas hard trials result in negative

PEs that also scale with the magnitude of incentive.

Predicted PE responses for hard trials mimic our observed

responses in striatum, however striatal responses for easy and

combined trials do not align with the predictions of the PEmodel.

Instead, we see that observed responses for easy trials are
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exactly opposite those of the PEmodel (Figure S4). Furthermore,

observed responses for the combined trials show deactivation,

whereas the model predicts no PE response. Overall, the results

of our simulation illustrate that a TD PE model is not sufficient

to describe our observed neural responses to incentives.

One might also consider a modified version of the PE model

that incorporates a loss aversion parameter such that negative

prediction errors loom larger than positive prediction errors.

However, such a revised PE model still does not capture the

pattern of deactivations observed in the easy condition of our

current task.

Brain Regions Showing an Interaction between Task
Performance and Incentive
To examine differences in brain activity as a function of unsuc-

cessful versus successful performance, we contrasted unsuc-

cessful and successful trials at the time of the motor task. We

also examined an interaction between performance (i.e., unsuc-

cessful and successful trials) and incentive level. We found no

significant main effect of task performance. However, we did

find a significant interaction between performance and incentive

in the ventral striatum (Figure 7; Table S4), such that this region

showed a greater deactivation as a function of incentive during

unsuccessful trials compared to successful trials (cluster sizes

> 100 voxels; right cluster peak: [x = 27; y = 0; Z = 0], T = 6.96;

left cluster peak: [x = �27; y = 3; Z = �3], T = 5.05). This region

overlapped with the portion of the ventral striatum we found to

be positively correlated with incentive at the time of incentive

presentation and negatively correlated with incentive during

themotor task (Figure S5). No other brain region showed a signif-

icant effect in this contrast (Table S4).

The finding of a similar pattern of deactivation in the striatum

during unsuccessful and successful trials suggests that on all

trials participants evaluate the prospect of losing. This loss

aversion is manifested irrespective of participants’ confidence

about the likelihood of success as their motor execution prog-

resses on successful trials, and irrespective of the eventual

outcome of a particular trial.

DISCUSSION

Our results provide insights into the potential contribution of the

ventral striatum in mediating the interaction between incentives

and behavioral performance. At the time of incentive presenta-

tion increased incentives result in striatal activation. This striatal
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Figure 6. A Prediction Error Model Does Not Describe Neural

Responses to Incentives

(A) We simulated prediction error (PE) signals at the time of incentive

presentation and the time of motor task execution.

(B) At the time of incentive presentation the PE model is in correspondence

with observed striatal activations.

(C) At the time of the motor task the PE model predicts positive prediction

errors for easy trials, negative predictions errors for hard trials, and no

prediction errors for combined difficulty. We observe striatal deactivations in

easy, hard, and combined trials. Observed percent signal change data were

extracted from average voxel activity in a ventral striatal ROI in contrasts for

easy, hard, and combined difficulty conditions.

See also Figure S4.
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activation is consistent with a wealth of evidence showing that

the striatum encodes a motivational signal associated with the

size of a potential reward (Breiter et al., 2001; Elliott et al.,

2003; Pessiglione et al., 2007; Tom et al., 2007). However, we

find that during task execution the same portion of striatum

deactivates in manner that is indicative of loss aversion and

eventual performance decrements. It is also important to note

that these findings are not confounded by differences in behav-

ioral performance between conditions, because the reported

fMRI results are based on trials in which the motor act was ulti-

mately successfully performed. Furthermore, a careful analysis

of participants’ movement trajectories yielded no significant

differences in a variety of kinematic measures as a function of
incentive level on successful trials (Figure S2). This indicates

that basic differences in the pattern of elicited motor behavior

cannot explain the observed fMRI results.

A recent imaging study found decreases in behavioral perfor-

mance and increases in midbrain activity in response to a large

incentive (Mobbs et al., 2009). The authors interpreted this

response as an ‘‘over motivation’’ signal for the high reward

associated with successful task performance. Here we show

that ‘‘arousal’’ or overmotivation is unlikely to be a complete

account for such performance decrements. The increasing posi-

tive responses we observed in striatum (that could be related to

arousal [Cooper and Knutson, 2008]), at the time of incentive

presentation, were not correlated with performance decrements.

Instead, only the decreasing activity observed during actual

motor action correlated with these decrements in performance.

Furthermore, loss aversion and not other arousal provoking

behavioral tendencies, such as risk-aversion (Lo and Repin,

2002), were found to be correlated with performance decre-

ments and striatal deactivation during motor action. Although

the Mobbs et al. (2009) study did not implicate ventral striatum

in the choking effect, instead identifying midbrain and dorsal

striatum, it is important to note that their study differed from

ours in the manner in which incentives were delivered. In our

study actual monetary rewards were only delivered at the end

of the experiment, whereas in the Mobbs et al. (2009) study,

incentives were accrued after every trial. Such differences in

experimental design could potentially account for the different

pattern of results.

One plausible mechanistic account of our findings relates to

a long hypothesized role for the ventral striatumas a limbic-motor

interface-mediating interactions between systems for Pavlovian

valuation and instrumental responding (Alexander et al., 1990;

Balleine, 2005; Cardinal et al., 2002; Mogenson et al., 1980).

Whereas previous literature has focused on the role of the ventral

striatum in mediating the effect of reward-predicting cues in

increasing or enhancing instrumental performance for reward,

our findings also point to a potential contribution of this region

in performance decrements. In our experiment it is likely that,

during motor performance, the prospect of losing elicits partici-

pants’ aversive Pavlovian conditioned responses (Dayan and

Seymour, 2008). These aversive responses could include motor

withdrawal and avoidance, as well as engagement of attention

or orienting mechanisms away from the task. At the level of

motor execution, competing aversive Pavlovian responses

could interfere with the motor commands necessary for suc-

cessful execution of skilled instrumental responses.

The main output pathway of the ventral striatum is via the

ventral pallidum (Graybiel, 2000; Grillner et al., 2005; Groenewe-

gen, 2003). The ventral pallidum projects to the thalamus, which,

in turn, sends motor signals to cortical areas (Graybiel, 2000;

Grillner et al., 2005; Groenewegen, 2003). The ventral striatum

also sends direct projections to brainstem areas such as the

pedunculopontine nucleus, which is implicated in voluntary

motor control (Lavoie and Parent, 1994; Mena-Segovia et al.,

2004; Semba and Fibiger, 1992). Accordingly, it is possible

that interference of the motor system from a ventral striatal moti-

vation signal could occur either at the level of the cortex or the

brainstem. Considerable further work will be needed to establish
Neuron 74, 582–594, May 10, 2012 ª2012 Elsevier Inc. 589



Figure 7. Interaction between Task Performance and Incentive

Level

This contrast illustrates brain regions, at the time of the motor task, that

showed a greater deactivation as a function of incentive level on unsuc-

cessful compared to successful trials (contrast: [unsuccessful ($0, $5, $25,

$50, $100)] � [successful ($0, $5, $25, $50, $100)]. Ventral striatum [x = 27;

y = 0; z = 0], significant at p < 0.05, small volume corrected. Error bars

represent SEM.

See also Figure S5 and Table S4.
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how ventral striatal signals come to act on the motor system,

both in the domains of performance increments and perfor-

mance decrements.

Our findings also have implications for other psychological

explanations of choking effects. As noted above, according to

the loss aversion theory, participants will likely engage mecha-

nisms associated with being in an aversive state. This could

include allocation of attentional resources away from the task.

In this sense divergence of attention may provide a potential

role in modulating performance. However, we did not find

evidence of behavioral decrements correlating with the fronto-

parietal attention network (Corbetta and Shulman, 2002), as

might be predicted by attentional theories. Although this does

not completely rule out the role of attention in the phenomenon,

such effects (if present) appear not to be mediated by brain

systems typically implicated in controlling attention.

Explicit monitoring theories suggest that performance decre-

ments can be caused by the transfer of behavioral control from

an automatized habit system to a goal-directed deliberative

system (Baumeister, 1984; Beilock and Carr, 2001; Beilock

et al., 2004; Langer and Imber, 1979). Considerable progress

has been made in identifying brain systems involved in goal-

directed and habitual control, with the ventromedial prefrontal

cortex and anterior dorsal striatum implicated in the former,

and the posterolateral striatum implicated in the latter (Balleine

and Dickinson, 1998; Balleine and O’Doherty, 2010; Corbit and

Balleine, 2003; Killcross and Coutureau, 2003; Valentin et al.,

2007; Yin et al., 2004, 2005). Although our ventral striatal findings

are consistent with the possibility of interactions between

Pavlovian and instrumental control systems, the absence of

any correlations between performance decrements and activity

in brain systems known to be involved in goal-directed or

habitual control do not lend support for the explicit monitoring

theory (at least in relation to the present study).

It is also important to note that although our present findings

support the role of aversion-related mechanisms in performance

decrements, we cannot rule out possible contributions of
590 Neuron 74, 582–594, May 10, 2012 ª2012 Elsevier Inc.
additional maliferous mechanisms in mediating performance

decrements under other task conditions or contexts. It remains

an open question whether similar mechanisms play a role in

driving performance decrements in the presence of stressors

other than large incentives, such as audience effects or com-

petition. It is entirely possible that no single mechanism will

account for all instances of the choking effect.

Our findings in the striatum also have implications for

economic theories of choice. Koszegi and Rabin (2006) have

suggested that we do not define our reference point for the value

of decisions and actions in the absolute terms specified by the

environment; instead we set an internal reference point based

on our expectations of a task outcome. The rapid switching of

ventral striatum, and loss sensitivity at the time of motor action

that we have shown here, suggests that the ventral striatum

might play a role in encoding such an endogenous reference

point. In a sense, when participants see they are playing for

$100, they view this money as being endowed to them and theirs

to lose. When they actually perform the task, their loss aversion

is revealed and manifested as decrements in performance.

Two recent behavioral economics studies postulate that refer-

ence dependent utility could influence performance decrements

in the context of professional athletics. In one of these studies

the authors examined millions of putts from professional golfers

and suggested that the par score of a hole served as a reference

point for players; with putts being less accurate when attempting

shots below par (Pope and Schweitzer, 2011). Another study

examined penalty kick shootouts of soccer games (Apesteguia

and Palacios, 2010). This study proposed that the score of the

shootout served as a player’s reference point and leading or

lagging in score had an influence on performance; with those

lagging in score performing worse than those leading. These

studies provide interesting insights into the possibility of an

endogenous reference point of value influencing skilled task

performance. However, these hypotheses are difficult to gener-

alize because the contexts in which the sports are played are

highly variable and the data lack a degree of experimental

control. Furthermore, it was impossible to directly isolate

players’ endogenous reference point of value because psycho-

logical and physiological measures were not available in these

data sets. Instead, these studies only infer possible mechanisms

used to define reference points during task performance.

Our study provides direct behavioral and neural evidence of

the mechanism responsible for encoding an endogenous refer-

ence point during skilled task performance for incentives. It is

important to realize that the hypothesis of a reference dependent

encoding of value, and exactly how this reference point is

defined, was informed and driven by our initial imaging analysis

(experiment 1). Without this fMRI analysis, one would simply

expect, as we did initially, that increasing incentives for task

performance are encoded solely as increasing potential gains.

In contrast, our fMRI analysis informed the hypothesis that the

brain encodes increasing potential gains when the amount of

incentive is initially presented, however when actually perform-

ing the task potential gains are reframed in terms of losses.

This neurally informed hypothesis was confirmed using a sepa-

rate experiment (experiment 2) in which we related a behavioral

measure of loss aversion to task performance. In this way we
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were able to uncover the specific mechanism involved in encod-

ing an endogenous reference point of value, and shed light on

how it influences skilled task performance. This study highlights

how neuroscience methods can provide insights of economic

behavior: one of the major goals of the burgeoning field of

neuroeconomics.

Economists have long pondered the question of how best to

design incentive contracts that pay workers just enough to fully

maximize their performance (Smith, 1776). Standard models of

these contracts assume that both the principal (manager) and

agent (worker) act rationally and in a fashion that maximizes their

individual utility (Laffont and Martimort, 2001). Under this

assumption it follows that a worker’s performance should

monotonically increase with pay. The results of our study illus-

trate that performance responses to incentives are far more

nuanced, and beyond the fine balance between performance

and pay are loss aversion and detrimental performance effects.

Our findings also have implications for understanding the

nature of performance decrements in situations where skilled

motor acts need to be performed under conditions of high

stakes, such as in sporting competitions (Jordet and Hartmen,

2008; Smith et al., 2003), or even in life and death situations

such as surgery or the operation of machinery in hazardous

environments. We have shown that people with less striatal

sensitivity to incentive (i.e., the most stable neural response

over the range of incentives) perform high stakes tasks with

more proficiency. With this in mind, it is plausible that the imple-

mentation of explicit cognitive strategies designed to focus an in-

dividual away from the prospect of failure could serve to stabilize

neural activity and mitigate potential performance decrements.

EXPERIMENTAL PROCEDURES

Experimental Setup

Stimulus presentation and behavioral data acquisition were achieved using

custom designed MATLAB (http://www.mathworks.com) and C++ programs

implementing the OpenGL (Silicon Graphics) graphics libraries. During func-

tional magnetic resonance (fMRI), visual feedback of targets and hand position

were presented via a projector positioned at the back of the room. Participants

viewed a reflection of the projector image (800 3 600 pixels) in a mirror

attached to the scanner head coil. This system allowed us to generate virtual

images and manipulate visual feedback.

Direct view of the arm was obscured because participants were positioned

in the scanner head-first-supine, and the display mirror blocked their view. A

Vicon motion tracking system (MX Ultranet system, with 4 MX40+ cameras;

Oxford Metrics, Oxford, UK) was used to record the motion of an infrared

reflective maker attached to the right index finger. During experiments, these

signals were sent to our custom designed software for visual real-time feed-

back of participants’ hand position. The position signals were also recorded

for further offline analysis. Participants’ arm movements were confined to

the coronal plane, and visual feedback of these movements was presented

in 2D on the visual display.

Experimental Procedures

Participants

All participants were right handed, and were prescreened to exclude those

with a prior history of neurological or psychiatric illness. The California Institute

of Technology Institutional Review Board approved this study, and all partici-

pants gave informed consent.

Eighteen participants (mean age, 26; age range, 19–35; seven females) took

part in the first experiment (experiment 1). Of these 18 participants 12 returned

for a subsequent test of behavioral loss aversion.
For the follow-up experiment (experiment 2), an additional 20 participants

were recruited (mean age, 23; age range, 19–30; nine females), however,

they did not perform the experiment in the fMRI scanner. They performed

the motor task in a mock scanning environment to duplicate the postural

constraints of the actual scanner. They also performed loss aversion and

risk aversion tasks.

Motor Task

The experiment was comprised of three phases that took place on two

consecutive days. On the first day, participants practiced control of the

spring-mass system (training phase). For a more detailed description of the

spring-mass system see the Supplemental Information. After the training

phase, we determined participants’ rates of success at various target sizes

(thresholding phase). On the second day, participants controlled the spring-

mass system with the purpose of obtaining reward (testing phase). Both the

training and thresholding phases took place in a mock scanner to replicate

the posture necessary in the scanning environment. The testing phase took

place in the fMRI scanner. Prior to the experiment, participants were told

they would receive a show-up fee of $40 dollars, and that at the end of the

experiment one trial would be randomly selected from the testing phase and

a payment made according to their actual performance on that trial. This is

a standard procedure used in behavioral economics, which ensures that

participants evaluate each trial independently.

The training phase was comprised of 500 trials. A trial began when a partic-

ipant put her hand cursor over the start position and ended after 2 s. At the end

of the trial, the cursors flashed green if the scoring criteria were met and red

otherwise. The target size was 502 mm throughout the training phase. The

thresholding phase was the same as the training in all respects, except that

it was comprised of 200 trials of varying size. Target sizes ranged from 102

mm to 552 mm in increments of 52 mm. Each target size was randomly

presented 20 times. From this data we obtained a psychometric curve that

represented participants’ performance over a range of target sizes.

Finally, during the testing phase participants were scanned with fMRI while

controlling the spring-mass system for reward. Participants performed trials

for a range of incentives (i.e., $0, $5, $25, $50, $75, $100) and at two difficulty

levels (i.e., easy, hard). The difficulty levels were tailored to each participant

using their respective psychometric curves. The easy level corresponded to

the target size at which participants have an 80% success rate, and hard coin-

cided with a 60% success rate. Each treatment was randomly presented 25

times for a total of 300 trials. At the beginning of each trial, participants were

shown a message indicating the amount of incentive they were playing for

(e.g., Win $50) (jittered duration 2–5 s). They then performed the motor task,

with the same success criteria as before (duration 2 s), andwere shown the trial

outcome (1 s). At the end of the experiment a single trial was selected at

random and the participant was paid based on performance on that trial.

Loss Aversion Task

This task was performed outside the fMRI scanner. Participants received an

initial endowment of $40 in cash (this amount was separate from their show-

up fee) and were told that at the end of the experiment one trial would be

randomly selected and a payment made according to their actual decision

during the experiment. Participants were told that their $40 endowment was

given to them so that they could pay any eventual losses at the end of the

experiment. Any net amount from the endowment that remained after sub-

tracting a loss was theirs to keep, and similarly any eventual gain earned in

the experiment was added on top of the initial endowment.

The experiment consisted of 512 trials. During the task participants were

asked to accept or reject a series of mixed gambles with equal (50%) proba-

bility of winning or losing a variable amount of money. These gambles were

presented on a computer screen as the prospective outcomes of a coin flip,

and participants indicated their willingness to take the gamble by key press.

Trials were self-paced. Each trial was uniquely and randomly sampled from

a gains/losses matrix with potential gains ranging from +$10 to +$40 and

potential losses from �$5 to �$20 in increments of $2. This task is the same

as that used by Tom et al. (2007).

Risk Aversion Task

Participants were also tested on their general risk attitude (independent from

loss aversion) using a series of monetary gambles that included only gains.

In each trial, each participant was presented with the choice either to accept
Neuron 74, 582–594, May 10, 2012 ª2012 Elsevier Inc. 591

http://www.mathworks.com


Neuron

Mechanisms Underlying Performance for Incentives
a safe option (i.e., a variable sure monetary amount) or to play a risky gamble

(i.e., flip a coin to receive a larger amount of money or get nothing). The sure

amount was either $10, $15, or $20. Corresponding gambles ranged from

$16 to $27, $26 to $37, and $36 to $47 respectively (in increments of $1).

Each trial was presented six times (216 trials in total) in random order. At the

end of the experiment a trial was randomly selected and a payment was

made according to the participants’ decision and a random outcome. This is

an adaption of the risk task developed by Holt and Laury (2002).

MRI Protocol

A 3 Tesla Siemens Trio (Erlangen, Germany) scanner and standard radio

frequency coil was used for all theMR scanning sessions. To reduce the possi-

bility of head movement related artifact, participants’ heads were securely

positioned with foam position pillows. High resolution structural images

were collected using a standard MPRAGE pulse sequence, providing full brain

coverage at a resolution of 1 mm 3 1 mm 3 1 mm. Functional images were

collected at an angle of 30� from the anterior commissure-posterior commis-

sure (AC-PC) axis, which reduced signal dropout in the orbitofrontal cortex

(Deichmann et al., 2003). Forty-five slices were acquired at a resolution of

3 mm 3 3 mm 3 3 mm, providing whole-brain coverage. A one-shot echo-

planar imaging (EPI) pulse sequence was used (TR = 2800 ms, TE = 30 ms,

FOV = 100 mm, flip angle = 80�).

Data Analysis

Behavioral Performance Analysis

To account for differences in behavioral performance variance between partic-

ipants (which contributed to extraneous variance in the aggregate data) we

Z-scored participants’ performance measurements. To do this, each partici-

pants’ measures of performance were separately standardized (Z-scored)

across incentive categories. Z-scoring was achieved by taking a performance

level in an incentive category and subtracting it from themean performance for

all incentive categories divided by the standard deviation. This preserved the

relative ordering of performance levels across incentives. Z-scoring is a widely

used method for normalizing ratings data between subjects that provides

a standard performance scale over which to evaluate group behavioral data

(Martin and Bateson, 1993).

Due to differences in participants’ subjective value for monetary incentives,

participants exhibited peak performance over the range of incentive levels

(Figure 3B) (Ariely et al., 2009), therefore averaging performance at the

presented incentive bins would attenuate the effect of peaked responses to

incentives. To illustrate that group performance peaked and then dropped

with increasing incentives, we classified the presented incentives as either

being at the extremes of incentives or in the middle range of incentives.

Rewards in the middle range of incentives were classified as those between

5% and 95% of the range of incentives (middle range of incentives: [$25,

$50, $75]), while rewards at the extremes of incentive were those outside

this range (low extreme: [$0, $5]; high extreme: [$100]).

To ensure that the results we obtained from our Z-scored performance

data were not an artifact of our normalization approach, we simulated

10,000 experiments each comprised of 18 subjects (the number of subjects

in our fMRI data set) wherein performance levels were sampled from a normal

distribution (mean = 70%, std = 10%). When performing a t test comparing the

Z-scored performance at the extremes of incentive ($0, $5, $100) with the

middle range of incentive ($25, $50, $75) we found that significance was

reached at the 5% level in less than 3% of simulations as would be expected

for an unbiased sample at the 5% significance level. Furthermore, in a subse-

quent analysis we found that 0 out of 10,000 of these simulations resulted in

a significant ANOVA at p < 0.05 and significant increases and decreases in

Z-scored performance across three incentive categories (low: $0,$5; medium:

$25, $50, $75; high: $100).

Image Processing and fMRI Statistical Analysis

The SPM5 software package was used to analyze the fMRI data (Wellcome

Department of Imaging Neuroscience, Institute of Neurology, London, UK). A

slice-timing correction was applied to the functional images to adjust for the

fact that different slices within each image were acquired at slightly different

points in time. Images were corrected for participant motion, spatially trans-

formed to match a standard echo-planar imaging template brain, and

smoothed using a 3DGaussian kernel (6mmFWHM) to account for anatomical
592 Neuron 74, 582–594, May 10, 2012 ª2012 Elsevier Inc.
differences between participants. This set of data was then analyzed

statistically.

The general linear model (GLM) was used to generate voxelwise statistical

parametric maps (SPMs) from the fMRI data. To generate the results pre-

sented in the main text we created a GLM that included categorical events

at the time of incentive presentation and separate events for each combina-

tion of motor task conditions (incentive level, difficulty, performance). The

incentive presentation event was modeled with a duration lasting the length

of incentive presentation (2–5 s), whereas the motor task event was modeled

with a fixed duration of 2 s. Because there were six incentive levels ($0, $5,

$25, $50, $75, $100), two difficulty levels (easy, hard), and two performance

outcomes (successful, unsuccessful), this resulted in 24 categorical events

to model all condition combinations of the motor task. Including the incentive

presentation event, a grand total of 25 categorical events were modeled. We

also included incentive level as a parametric modulator at the time of the

incentive presentation event. In addition, regressors modeling the head

motion as derived from the affine part of the realignment produce were

included in the model.

With this model we tested brain areas in which activity was correlated with

incentive level at the time of incentive presentation. This was done by creating

contrasts with the aforementioned parametric modulator for incentive at the

time of incentive presentation. We also examined areas in which activity

was correlated with incentive level at the time of the motor task. This was

done by creating linear contrasts for the motor task conditions at the varying

incentive levels (separated among difficulty levels and performance

outcomes). To increase statistical power these contrasts (Figure 4) were

computed for trials collapsed across difficulty levels; and to control for actual

performance they were computed for only those trials in which participants

were successful.

We created a separate GLM to test for differences in brain activity between

performance outcomes (i.e., unsuccessful and successful trials) during the

motor task, and activity showing an interaction between incentives and perfor-

mance during the motor task. This model included a categorical event at the

time of incentive presentation and separate events at the time of the motor

task for unsuccessful and successful trials. Each of these categorical regres-

sors included a parametric modulator corresponding to the level of incentive

presented. The main effect regressors for unsuccessful and successful trials

were subtracted to create contrasts showing the differences between

successful and unsuccessful trials. To create the interaction contrast (Figure 7)

we subtracted the incentive parametric modulators, at the time of the motor

task, for unsuccessful and successful trials.

Analysis of Behavioral Loss Aversion Data

To estimate participants’ loss aversion we used a parametric analysis. We ex-

pressed participants’ utility function u for monetary values x as

uðxÞ=
�

x xR0
lx x<0

:

This formulation is similar to that introduced by Tversky and Kahneman

(1992), except we assumed that u(x) was piece-wise linear over the range of

potential gains and losses presented to participants (an assumption that is

commonly employed [Frydman et al., 2011; Gachter et al., 2007; Tom et al.,

2007]). In this formulation, l represents the relative weighting of losses to

gains, and l > 1 indicates that losses loom larger than equal-sized gains.

Assuming participants combine probabilities and utilities linearly the ex-

pected utility of a mixed gamble can be written as U(G, L) = 0.5 G + 0.5 lL,

where G and L are the respective gain and loss of a presented risky option.

The probability that a participant chooses to make a gamble is given by the

softmax function

PðG;LÞ= 1

1+ expð � tUðG; LÞÞ;

where t is a temperature parameter representing the stochasticity of a partic-

ipant’s choice (t = 0 means choices are random).

We usedmaximum likelihood to estimate parameters l and t for each partic-

ipant, using 512 trials of mixed gambles (G,L) with participant response y ˛
{0,1}. Here y = 1 indicates that the participant chose to make a gamble. This

estimation was performed by maximizing the likelihood function
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X512
k = 1

yi logðPðG; LÞÞ+ ð1� yiÞ logð1� PðG; LÞÞ

using Nelder-Meas Simplex Method in Matlab 2008b.

Median parameter estimates for experiment 1 (n = 12) were l = 2.09 (IQR

1.09) and t = 0.70 (IQR 0.27). Median parameter estimates for experiment 2

(n = 20) were l = 2.20 (IQR 0.75) and t = 0.60 (IQR 0.44).

Analysis of Behavioral Risk Aversion Data

Because participants’ risk aversion was tested using a separate set of behav-

ioral choices we used a separate parametric analysis for estimation. The risk

aversion task only included potential gains x, and we expressed participants’

utility u as

uðxÞ= xa xR0:

This formulation is from prospect theory and is commonly used to charac-

terize utility in the gain domain (Tverskey and Kahneman, 1992). It captures

participants decreasing sensitivity to potential gains as the magnitude of gains

increases. The parameter a represents the degree of a participants’ risk aver-

sion (a = 1 characterizes risk neutrality; a < 1 risk aversion; a > 1 risk seeking

behavior).

A participants’ difference in expected utility for mixed gambles comprised of

a risky option (G,0) and a sure option S is expressed as U(G, S) = 0.5 Ga � Sa.

The probability that a participant chose to make a gamble is

PðG;SÞ= 1

1+expð � tUðG;SÞ:

As in the case of the loss aversion data, we used numerical optimization to

estimate the parameters a and t for each participant by maximizing the likeli-

hood function

X216
i = 1

yi logðPðG;SÞÞ+ ð1� yiÞ logð1� PðG;SÞÞ:

Median parameter estimates for experiment 2 (n = 20) were a = 0.83 (IQR

0.20) and t = 2.46 (IQR 1.70). Risk aversion was not estimated for participants

in experiment 1 because they did not perform the risk aversion task.
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