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Abstract

Most utility theories of choice assume that the introduction of an irrelevant option (called the decoy) to a choice set does
not change the preference between existing options. On the contrary, a wealth of behavioral data demonstrates the
dependence of preference on the decoy and on the context in which the options are presented. Nevertheless, neural
mechanisms underlying context-dependent preference are poorly understood. In order to shed light on these mechanisms,
we design and perform a novel experiment to measure within-subject decoy effects. We find within-subject decoy effects
similar to what have been shown previously with between-subject designs. More importantly, we find that not only are the
decoy effects correlated, pointing to similar underlying mechanisms, but also these effects increase with the distance of the
decoy from the original options. To explain these observations, we construct a plausible neuronal model that can account
for decoy effects based on the trial-by-trial adjustment of neural representations to the set of available options. This
adjustment mechanism, which we call range normalization, occurs when the nervous system is required to represent
different stimuli distinguishably, while being limited to using bounded neural activity. The proposed model captures our
experimental observations and makes new predictions about the influence of the choice set size on the decoy effects, which
are in contrast to previous models of context-dependent choice preference. Critically, unlike previous psychological models,
the computational resource required by our range-normalization model does not increase exponentially as the set size
increases. Our results show that context-dependent choice behavior, which is commonly perceived as an irrational response
to the presence of irrelevant options, could be a natural consequence of the biophysical limits of neural representation in
the brain.
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Introduction

At the core of many utility theories used in social and biological

sciences lies a central axiom, called independence from irrelevant

alternatives (IIA). The IIA axiom states that the relative preference

between any pair of options does not depend on what other

options might be present [1–3]. In decision neuroscience, IIA

holds in the appealing model in which separate values are

computed for each different option, and values are then compared

to make a choice [4,5]. Nevertheless, a wealth of data has clearly

shown that the IIA axiom is often violated behaviorally [6,7]. For

example, it has been shown that adding a third ‘‘decoy’’ option

into a choice set often results in a predictable shift in the relative

preference between the other two options of an initial pair. A

striking example is when the decoy option is dominated by one

initial option – i.e., all of the new option’s attributes are worse than

the existing option attributes – but is not dominated by the other

initial option. The decoy is an ‘‘irrelevant alternative’’ because it

would never be chosen if it is dominated by another option.

Introducing such a decoy results in an increased preference for the

initial option that dominates the decoy [6,8–10], a phenomenon

called the attraction effect or the asymmetric dominance effect.

Decoy effects can be considered an error in logical reasoning

and there is some evidence that they can be exploited by consumer

marketing and political strategies [11–13]. Interestingly, these

effects are not limited to humans [14–16], they increase after

lesion of the medial orbitofrontal cortex in macaques [17], and

they can be mitigated by improving self-control or increasing

blood glucose [18]. Considering that under realistic scenarios,

choices are usually made in particular contexts [19], exploring the

neural mechanisms underlying context-dependent preference is

crucial for better understanding of choice behavior in general [20].

Several explanations have been proposed to account for the

preference reversal induced by the type of decoy in a choice set.

Most of these models are based on verbally-described heuristics

and are not mathematically formalized, which makes them

difficult to test or generalize to new experimental paradigms

[21,22]. An exception is the context-dependent ‘‘advantage’’

(CDA) model of Tversky and Simonson that coherently accounts

for attraction and other context effects [7]. The CDA relies on the

PLoS Computational Biology | www.ploscompbiol.org 1 July 2012 | Volume 8 | Issue 7 | e1002607



comparison between different attributes of the available options to

account for context effects [23]. The CDA model is the precursor

of more elaborate connectionist models such as the leaky

competing accumulator (LCA) model [24,25] or the decision field

theory (DFT) [26,27]. All these models aim to account for many

types of context effects such as attraction, similarity, and

compromise effects within a single framework [28]. The two

popular connectionist models, the LCA and DFT, differ in a

number of key features, such as the requirement of loss aversion,

but like the CDA model, their core mechanism is comparison

between each pair of option attributes. In most cases, psycholog-

ical models such as CDA, LCA, and DFT, successfully reproduce

the behavioral observations that they aim to explain. However

comparing all attributes between all pairs of options in the choice

set is computationally demanding, especially as the number of

options and attributes grows. Other models of choice avoid these

demands by assuming limited sequential attribute comparison

(e.g., elimination-by-aspects [29], for which there is evidence [30]),

but those models cannot explain the attraction effect.

We propose a new model to explain context effects, based on

known biophysical limits of neural representation. The guiding

presumption in our range-normalization (RN) model is that

subjective values of option attributes are encoded in the firing rate

of neural populations, rather than other aspects of neural firing

[31]. If so, mental representations of subjective values will be

bound by the same biophysical limits that govern neural

representations. Namely, neural responses are bound from below

by zero and from above by a few hundred spikes per second and,

therefore, neurons can only represent a set of stimuli using a

limited range of firing rates. Faced with a new set of stimuli to

encode, however, neurons can adjust their dynamic range (i.e.

interval between threshold and saturation points) to represent

these stimuli distinguishably. We propose that this adjustment

mechanism, which we call range normalization, is the principal neural

mechanism underlying context-dependent effects.

Normalization of the neural response is common in vision and

other sensory modalities, and could be a more widespread

property of neural representations [32]. To account for context

effects, the range-normalization mechanism we propose here is

computationally easier than comparison of all pairs of option

attributes, since only the two most extreme attribute values are

needed to compute the range. We implement a specific functional

form of range normalization and test predictions of the outcome

model using a novel within-subject design.

We first describe experimental results that demonstrate within-

subject decoy effects and reveal some new properties of these

effects (correlation between effects across types of decoys and

decoy distance). Second, we describe the CDA model, how

attribute comparison gives rise to context effects in this model, and

its predictions in our experimental paradigm. Third, we present

our RN model and its predictions for context effects. Finally, we

describe new, contrasting predictions of the CDA and RN models

about the influence of choice set size on context effects and the

neural plausibility of these models.

Results

The experimental paradigm to test within-subject decoy
effects

Our experimental paradigm consisted of two tasks: an initial

estimation task and the decoy task. We used the subject’s choice

from the estimation task to calculate the subject’s attitude toward

risk in order to tailor subject-specific target (T) and competitor (C)

gambles that are equally preferred (see below). This step is

necessary because context effects are most strongly demonstrated

when T and C are equally valuable. In the second part of the

experiment (decoy task), we assessed the preference between

jittered versions of the T and C gambles in the presence of a third

decoy gamble (see Methods for more details).

Behavioral results from the estimation task
During the estimation task, the subject was presented with two

options. These options were risky monetary gambles, described by

probability p of winning a monetary reward of magnitude M,

denoted (p,M). On each trial, the subject selected between pairs of

gambles, always consisting of one fixed low-risk gamble, (0.7, $20),

and one high-risk gamble, (0.3, $M), for many different values of

M (see Methods for more details).

The data analysis of the estimation task confirmed that all

subjects appeared to understand the task and respond to changes

in magnitude, preferring the high-risk gamble when its reward

magnitude was large, but not when its reward magnitude was

small (Figure S1 in Text S1). Logistic fitting of these choices

yielded a subject-specific value of the high-risk gamble magnitude

M for which the low- and high-risk gambles are equally

subjectively valuable. (Figures S2A and S2B in Text S1). Across

subjects, we found a wide range of values for the indifference high-

risk magnitude and the sensitivity to reward magnitude (1=sM ),

but these two quantities were not significantly correlated (p = 0.33)

(Figure S2C in Text S1).

As a validity check, we computed the relative expected utility of

each pair of gambles (DEV ), and divided the pairs into sets with

DEV either greater than 2sM (easy choice pairs), or less than 2sM

(hard choice pairs). If value is being inferred accurately, response

times (RTs) should be slower for hard choice pairs that are close in

subjective value. As predicted, the average RT was about

110 msec longer on trials with hard choice pairs, and that relation

also held for all but one subject (Figure S3 in Text S1).

Modulation of preference by the decoy
On each trial of the decoy task, three monetary gambles were

displayed on the screen for an 8 sec evaluation period. At the end

Author Summary

While faced with a decision between two options for
which you have no clear preference (say, a small cheap TV
and a large expensive TV), you are presented with a new
but inferior option (say, a medium expensive TV). The mere
presence of the new option, which you would not select
anyway, shifts your preference toward the expensive large
TV. This simple example shows how the introduction of an
irrelevant option, called the ‘‘decoy,’’ to the choice set can
change preference between existing options, a phenom-
enon often called the context-dependent preference
reversal. A number of models have been proposed to
explain context effects. Despite their success, they are
either uninformative about the underlying neural mecha-
nisms or they require comparison of every possible pair of
option attributes, a computation that is unlikely to be
implemented by the nervous system due to its high
computational demand and undesirable outcomes when
the choice set size increases. Here we present a novel
account of the context-dependent preference based on
the adjustment of neural response to the set of available
options. Moreover, we show results from a novel behav-
ioral task designed to test contrasting predictions of our
model and a classic model of context effects.

Neural Model of Context-Dependent Choice
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of this period, one of the three gambles was removed from the

screen and subjects had only 2 sec to choose one of the two

remaining gambles in a selection period (Figure 1A). Two of three

initial gambles were the low-risk gamble (target T) and the subject-

tailored high-risk gamble (competitor C). The third gamble was

the decoy gamble (D) that was randomly chosen from a set of

gambles with a wide range of attribute values (see Figure 1B and

Methods for more details).

On two thirds of the trials (regular trials), the decoy gamble was

removed after the evaluation period and the subject had to choose

between T and C gambles. On the remaining one third of the

trials (catch trials), either the T or C gamble disappeared. The

catch trials were included to conceal the underlying structure of

the task and were subsequently discarded from the analysis (since

they do not provide choices between T and C). Therefore, we only

analyze the regular trials to investigate how the preference

between T and C gambles changed as a function of a decoy that

was present at the evaluation period, but not available in the

selection period.

Having a long evaluation period (8 sec) and a short selection

period (2 sec) forces subjects to evaluate and ‘‘pre-choose’’

options by ranking them during the evaluation period; therefore,

they would be prepared to make a rapid choice in the 2-sec

selection period. This ensures that presentation of the decoy

during the evaluation period can influence context-dependent

processes of assigning values enough to have a behavioral impact

during rapid selection. This ‘‘phantom decoy’’ design allowed us

to study the effect of dominant decoys (decoys that are better

than either T or C gambles) as well as dominated decoys (see

below).

We found that subjects’ preference between T and C was

systematically influenced by the attributes of the decoys. The first

indication of the decoy influence on the subsequent choice was

that the majority of our subjects did not select T and C gambles

equally (Figure S4 in Text S1), though they were constructed (from

the estimation task data) to be equally preferable.

As in previous studies, we divided trials into 6 groups (D1 to D6)

based on the position of the decoy (Figure 1B). Decoys in positions

D1 and D4 are called the asymmetrically dominant decoys because

they dominate either T or C (they are less risky and also have

larger reward magnitudes), but do not dominate both. Decoys in

positions D3 and D6 are asymmetrically dominated decoys since

they are either worse than the target (D6) or the competitor (D3)

on both dimensions (i.e. they are more risky and also have smaller

reward magnitudes), but are only dominated by one of T and C

[6,10]. Finally, decoys in positions D2 and D5 are similar to the

target and the competitor and are better on one dimension but

worse on another. They are called similar decoys [28,33].

Figure 1. Experimental design and behavioral results. (A) Timeline of the experiment during the decoy task. A trial started with a fixation
point, followed by the presentation of three options (monetary gambles) on the screen for 8 sec (evaluation period). These gambles were the target
(T) and the competitor (C) gambles, tailored to be equally preferable, and a third gamble, the decoy (D). At the end of evaluation period, one of the
three gambles was removed from the screen and subjects had only 2 sec to choose one of the two remaining gambles by pressing a button
(selection period). (B) Positions of decoys with respect to T and C. Decoys were presented in different locations of the attribute space: probability
(dimension 1) and magnitude (dimension 2). For data analysis, decoys were grouped into 6 locations, depending on theirs position with respect to
the closest gamble to them. Decoys at D1 and D4 regions are referred to as the asymmetrically dominant. Decoys at D3 and D6 regions are referred to
as the asymmetrically dominated. Finally, decoys at D2 and D5 regions are referred to as the similar decoys. (C, D) Modulation of preference for the
target, and the decoy efficacy as a function of different decoys. The average of modulation for each decoy is plotted in black (error bars are the s.e.m.)
and the gray symbols show the value for individual subjects. The star on a given decoy location shows that the modulation for that decoy was
significantly different from zero (Wilcoxon signed rank test, p,0.05). Decoy effects were significant for all decoys except D2 decoys.
doi:10.1371/journal.pcbi.1002607.g001

Neural Model of Context-Dependent Choice
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We quantified decoy effects by computing the difference

between the probability of selecting the target for a given decoy

location, pT (Di), and the overall probability of choosing the target

across all trials, pT (Figure 1C). We found that the decoys

influenced subjects’ preference between T and C gambles (one-

way ANOVA, p,0.0001) and the average values of (pT (Di){pT )
over all subjects were significantly different from zero (Wilcoxon

signed rank test, p,0.05) except for decoys in position D2.

For statistical purposes, it was useful to scale decoy effects to

account for the fact that some subjects had an overall target choice

frequency, pT , which was very different from 0.5 (despite the

attempt to control this frequency using the estimation task). A

scaled measured of decoy efficacy (see Methods) that adjusts for the

target choice frequency still showed strong within-subject decoy

effects (one-way ANOVA, p,0.0005) similar to changes in

preference presented earlier (Figure 1D).

In addition, we replicated three main findings regarding decoy

effects. Firstly, we observed a robust attraction effect similar to

what has been shown in previous between-subject studies [6,10].

That is, the asymmetrically dominated decoys D3 and D6 increased the

selection of the option that dominated them: competitor C and

target T, respectively (Wilcoxon signed rank test, p,0.05).

Secondly, the asymmetrically dominant decoy D1 and D4 decreased

the selection of the option which was dominated by those decoys:

competitor C and target T, respectively (Wilcoxon signed rank

test, p,0.05). We were able to study this effect due to our task

design where the dominant decoy disappeared during the selection

time. Thirdly, decoys in positions D2 and D5 decreased the

selection of the option close to them (C and T, respectively);

however, only the effect of decoys in position D5 was statistically

significant (Wilcoxon signed rank test, p,0.05). These effects have

been previously described as the similarity effects [29], indicating

that decoys take more share from the option in the choice set with

which they are most similar, thereby decreasing the preference for

the option similar to them.

Thus, our results confirm previous between-subject findings and

extend them to a within-subject design. Most preference reversals

due to differences in descriptions, procedures or context are

established by between-subject designs. Preference for between-

subjects designs is guided by the intuition that two conditions that

change a normatively irrelevant detail will be transparently

equivalent if both conditions are presented in a within-subjects

design; however, the normative irrelevance is cognitively inacces-

sible if only one condition is presented, in a between-subjects

design. Establishing context-dependence in a within-subject design

therefore shows its robustness. The within-subject design also adds

substantial statistical power, and allows us to compute the within-

subject correlation between effects for different decoys (which a

between-subject design cannot do).

We also examined relationships between the overall decoy

effects, as shown by a given subject and his/her risk aversion

parameters from the estimation task. We found no relationship

between the overall susceptibility of individual subjects to decoys

(defined as the average of absolute values of decoy efficacies for

each subject) and their indifference values (r = 20.2, p = 0.38), or

between the overall susceptibility and the sensitivity to the reward

magnitude (r = 20.21, p = 0.37).

Dependence of decoy effects on distance and correlation
between decoy effects

Next, we divided all regular trials into close and far trials,

depending on the distance between the decoy and the gamble

closest to it. Then we computed the decoy efficacy for each decoy

location (Figure S5 in Text S1). For this analysis, decoy efficacies

for close and far decoys were defined relative to the overall

probability of selecting T only for the corresponding set of close or

far decoys; therefore, this definition controlled for possible

differences between the close and far sets of gambles. Close

decoys had no significant effect (one-way ANOVA, p = 0.69), while

far decoys had a very strong effect (one-way ANOVA, p,10211)

(Figure 2A). Moreover, for all decoys with significant effects over

all trials (except D4), the far decoy effect was larger than the close

decoy effect (two-sample t-test, p,0.01).

We then examined the correlation between different decoy

effects within-subjects. This correlation analysis provided a tool for

testing whether different types of decoy effects were generated by

the same mechanisms or not. We grouped decoys at different

locations into three decoy types—asymmetrically dominant decoys

(D1 and D4), similar decoys (D2 and D5), and asymmetrically

Figure 2. Correlation between decoy effects and dependence of decoy effects on the distance. (A) Dependence of the decoy efficacy on
the distance of decoy from its closest option. The mean decoy efficacy for each decoy type is plotted for close (gray) and far trials (light gray),
separately. The error bars are the s.e.m. and the light or dark gray star shows an effect is significantly different from zero for the corresponding
location and distance (Wilcoxon signed rank test, p,0.05). For all subjects, decoy efficacies are larger in magnitude for far decoy trials than close
decoy trials, for all decoys except D2 and D4 where they are indistinguishable. (B) Mean decoy efficacies for different decoy types: dominant, similar,
and dominated. Each circle represents the decoy efficacy for an individual subject and the error bars are the s.e.m. The star on a given decoy type
shows that the decoy efficacy is significantly different from zero (Wilcoxon signed rank test, p,0.05). (C) Anticorrelation between efficacies of
dominant and dominated decoys. The dashed line shows the linear fit.
doi:10.1371/journal.pcbi.1002607.g002

Neural Model of Context-Dependent Choice
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dominated decoys (D3 and D6). We then computed the average

decoy efficacy for each of these three decoy types in terms of their

effects on the preference for the gamble close to or far from them.

A positive (or negative) decoy efficacy means an increase (or

decrease, respectively) in the preference for the gamble close to the

decoy with respect to the gamble far from it.

The different decoy types do influence the choice preference

differently (one-way ANOVA, p,0.0001). Specifically, asymmet-

rically dominant decoys decreased preference for the gamble close

to it (Wilcoxon signed rank test, p,0.05) while asymmetrically

dominated decoys increased preference for the gamble close to it

(Wilcoxon signed rank test, p,0.05) (Figure 2B). There were no

significant effects for similar decoys (Wilcoxon signed rank test,

p = 0.07). Interestingly, we found a significant negative correlation

between asymmetrically dominant and asymmetrically dominated

decoy efficacies (r = 20.57, p = 0.008) (Figure 2C).

Behavior and predictions of the CDA model
Next we tested whether the CDA model could reproduce the

decoy effects observed in our experiment. First, we briefly describe

the CDA model of Tversky and Simonson [7] and we present

some results and predictions of this model that are relevant to our

experimental paradigm. For simplicity, we assumed options have

only two attributes and that the overall subjective value of an

option is a weighted sum of its values on these attributes. The latter

was assumed to avoid altering the original CDA model for the case

where the overall value of an option is the product of its attribute

values (as for risky gambles).

In the CDA model, the context effects arise from pairwise

comparison of all options in the choice set. This pairwise

comparison is performed through computing quantities termed

the advantage and disadvantage. More specifically, the advantage of

option T with respect to option C, A(T ,C), is defined as

A(T ,C)~
X

i

Ai(T ,C)

where

Ai(T ,C)~
vi(Ti){vi(Ci) if vi(Ti)wvi(Ci)

0 otherwise

�

Similarly, the disadvantage of option T with respect to option C,

D(T ,C) is defined as

D(T ,C)~
X

i

Di(T ,C)

Di(T ,C)~d(Ai(C,T))

where d(t) is an increasing monotonic function of t (note the

change in the order of T and C in the argument of the advantage

and disadvantage functions). Tversky and Simonson included loss

aversion in their model, by assuming that the disadvantage looms

greater than the advantage, that is d(t)wt [7]. For simplicity, we

assume a linear relationship, d(t)~lt where lw1.

The advantage and disadvantage are used to define the relative

advantage of option T with respect to option C,

R(T ,C)

R(T ,C)~
A(T ,C)

A(T ,C)zD(T ,C)
ð1Þ

Finally, the value of an option in the choice set increases

proportionally to the sum of the relative advantages between that

option and each other option in the choice set. With three options

T, C, and D, the overall values of options including context effects

are

~VV(T)~V (T)zh(R(T ,C)zR(T ,D))

~VV(C)~V (C)zh(R(C,T)zR(C,D))

~VV(D)~V (D)zh(R(D,T)zR(D,C))

ð2Þ

where q determines the strength of the context effects, and V (X )

and ~VV (X ) are the subjective values of option X before and after

including the context effects. We can apply a sigmoid function to

the difference in option values of T and C to obtain the choice

preference between these options, before and after the decoy

introduction.

In order to illustrate the behavior of the CDA model over a

wide range of decoy attributes, we calculated the change in the

value of original options (i.e. the options of the choice set before

the decoy was introduced) as a function of each decoy’s attributes

(Figure 3A). This analysis showed that the maximal change in the

value of a given option happens when the decoy is dominated

(both decoy attributes are smaller than the attributes of that

option). Likewise, when the decoy is dominant (both decoy

attributes are larger than the attribute of a given option), the

change in that option value is zero, independent of the exact

location of the decoy. These option value changes happen because

the relative advantage is one for dominated decoys and zero for

dominant decoys. Overall, decoy introduction can only add a non-

negative amount to the value of original options in the choice set.

This property has undesirable consequences, which we discuss

later.

Next, we computed the change in the difference between the

values of the original options (and the resulting change in

preference between them) as a function of the decoy attributes

(Figure 3B). This analysis revealed some important aspects of the

CDA model. Firstly, no change in preference occurs when both

decoy attributes are smaller or larger than the attributes of both of

the original options. This means that in the CDA model, such

decoys are irrelevant for the choice preference. Secondly, the

change in preference is larger when the decoy is dominated by the

close option rather than when the decoy is dominant (Figure 3B),

because of loss aversion (d(t)wt). Finally, preference reversal is

stronger for decoys close to the original options than for far decoys

(Figure 3B).

For better comparison of the results of the CDA model with

our experimental data, we calculated the average models’ choice

behavior for decoys at locations in the attribute space that

qualitatively match our experimental design (see Methods for

more details). The CDA model exhibits attraction and asymmet-

rically dominant decoy effects, but not similarity effects (as has

been previously pointed out [26], Figure 3C). However, because

both attraction and asymmetrically dominant decoy effects are

driven by the same mechanism (but in an opposite direction), the

values of decoy efficacies for these decoys are anti-correlated

(data not shown). Moreover, as mentioned above, the decoy

effects are stronger for attraction than asymmetrically dominant

decoys due to the inclusion of the loss aversion concept in the

CDA model (Figure 3C). There is some evidence for this

prediction when we group the experimental data based on the

decoy type (Figure 2B). However, fitting of our data using the

CDA model yielded l~0:87, which is closer to loss-neutrality

Neural Model of Context-Dependent Choice
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(Figure S6 in Text S1). Finally the CDA predicts that close decoys

have stronger effects than far decoys (Figure 3D). This prediction

of the CDA model is not supported by our experimental data

(Figure 2A).

The Range-Normalization (RN) model
Here we propose a model for context effects that can account

for our experimental observations and is based on plausible limits

of neuronal elements in representing sensory and cognitive

stimuli. Specifically, for neural representation to be useful it

should be able to distinguish between any two unequal stimuli in

the set of represented stimuli. However, neural firing rates are

bounded between zero and a few hundred spikes per second.

That is the neural representation could be variable only in the

interval between a threshold and saturation points (dynamic

range); outside this interval, the stimuli are represented with the

same response. Nevertheless, the response of a neuron (or a

population of neurons) to a set of stimuli can still vary, depending

on the relationship between the location of the threshold and

saturation points and the values of all stimuli that have to be

represented in the firing activity. Considering the mentioned

constraints, it is therefore plausible that the response of a neuron

or a population of neurons can be adjusted to a new set of stimuli

that it needs to represent (widespread evidence of neural

adaptation is reviewed in the Discussion). We show that this

neural adjustment could explain the context-dependent prefer-

ence reversal.

In this model we assumed that the overall value of a given

option is represented by a neural population that receives inputs

from different neural populations selective to an individual option

attributes (see Method for more details). Assuming a linear

response function, the overall value of an option, which is reflected

in the firing activity of an option-selective population, is equal to a

weighted sum of the neural responses to its attribute values

V (A)~RA~wA1r1(A1)zwA2r2(A2) ð3Þ

where RA is the response of population selective to option A, ri(Ai) is

the neural response of attribute-selective population i to option A,

and wAi is the weight of connections from the attribute-selective

population i to the option-selective population A.

For simplicity, we considered the case in which the neural

response of attribute-selective populations is a linear function of

stimulus value, s, when s is above a threshold ct,i and below a

saturation point cs,i. In addition we normalized the response to the

maximum response level so that the maximum response is

represented with 1. Note that any difference in the maximum

response of neurons encoding different attributes can be absorbed

into the connection weights wi’s. Therefore, the neural represen-

tation attribute i can be written as

Figure 3. Effects of the decoy on valuation in the CDA model. (A) Predicted change in the overall value of the target ( ~VV (T){V (T)) and its

competitor ( ~VV (C){V (C)) as a result of decoy introduction at different locations of the attribute space. The change in the overall value of each option
and their difference is normalized by the value of these options before the inclusion of the context effects. The decoy introduction results in maximal
(zero, respectively) change in the overall value of a given existing option, if both decoy attributes are smaller (larger, respectively) than the attributes

of that option. (B) The predicted difference between the values of target and competitor ( ~VV (T){ ~VV (C)) as a result of decoy introduction at different
locations of the attribute space. Conventions are the same as in A. Introduction of the decoy results in preference reversal for many decoys while this
effect is stronger for decoys that are closer to the original options than the farther decoys. Note that the effect is stronger when the decoy is
dominated by the close option than when the decoy is dominant to that option (for this simulation we set w1~w2~4, h~V (T)=1:3, and l~2). (C)
The probability of selecting T for different decoys, as defined in Figure 1, for two realizations of the CDA model: without the inclusion of the loss
aversion (l~1) and with moderate loss aversion (l~2). Dashed lines are to guide the eye. In both cases, CDA model predicts the attraction and
asymmetrically dominant effects (i.e. reversal for D1, D3, D4, and D6) but no effects for D2 and D5 decoys. (D) Decoy efficacies for different decoys
predicted by the CDA model with moderate loss aversion (l~2) and separately for close and far decoys. Decoy efficacies are smaller in magnitude for
far decoys than close decoys.
doi:10.1371/journal.pcbi.1002607.g003
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ri(s)~0 if svct,i

ri(s)~ki(s{ct,i) if ct,iƒsƒcs,i

ri(s)~1 if s§cs,i

ð4Þ

and so is determined by two parameters ct,i and cs,i. In order to

simplify the notation, we drop the subscript i in the rest of the

manuscript, but it should be understood that the neural

representation could be different for each attribute.

In order to express the neural response in terms of the range

and configuration of represented stimuli, we define two new

parameters, ft and fs, which we call the representation factors

ft:
smin{ct

sn min{smin

if ct§smin

ft:
smin{ct

sn min{ct

if ctvsmin

8><
>:

fs:
cs{smax

cs{sn max
if cs§smax

fs:
cs{smax

smax{sn max
if csvsmax

8><
>: ð5Þ

where smin and snmin are the minimum and next-to-minimum values

of s, and smax and snmax are the maximum and next-to-maximum

values of s, respectively. The representation factors, ft and fs,

determine the fraction of the value space around the minimum

and maximum stimuli that are below or above the threshold or

saturation points, respectively. This can be seen more clearly by

expressing the threshold and saturation points, ct and cs, in terms of

the representation factors

ct~
smin{ftsn min

1{ft

, if ft§0

ct~smin{ft(sn min{smin), if ftv0

8><
>:

cs~
smax{fssn max

1{fs

, if fs§0

cs~smaxzfs(smax{sn max), if fsv0

8><
>:

ð6Þ

Note that a positive fs implies that the neuron never reaches to its

maximum possible faring rate. Therefore, the representation

factors determine efficiency of a neuron (or a neural population) in

representing a set of stimuli in their firing activities (see below), and

so they are inherent properties of the neuron. By imposing

{1vftv1 and {1vfsv1, it is guaranteed that neural responses

to different stimuli are distinct (except when there are only two

presented stimuli, for which an additional constraint needs to be

imposed: ftzfsv1).

In order to show how neural representation depends on the

representation factors defined above, we plotted the neural

responses for different values of representation factors in the case

in which there are only two options (C and T) in the stimulus set

(Figure 4A). For positive values of the representation factors

threshold and saturation points are below and above the

minimum and maximum stimuli, respectively. On the other

hand, for negative values of representation factors, threshold and

saturation points are above and below the minimum and

maximum stimuli, respectively (which means extreme stimuli

can be represented with the same response because they lie

outside the dynamic range).

Therefore, the representation factors determine the relative

position of the dynamic range of the neural response with respect

to a set of represented stimuli. However, the above equations show

that when a new stimulus is introduced to the stimulus set, the

threshold and saturation points need to be adjusted in order for the

representation factors to stay the same or adapt to the new set.

Using Eq.6 and assuming that the representation factors stay the

same before and after decoy introduction (a condition which can

be relaxed as shown below), we computed the adjustment of neural

response and changes in the response to the original options due to

decoy introduction (Figure 4B). The decoy may introduce a new

minimum or maximum (or a next-to-minimum or next-to-

maximum) to the stimulus set, and in all of these cases it changes

the configuration of stimuli.

If there were originally two options in the set, the decoy

introduction always changes the neural representation and

therefore changes the value of the original options. More

interestingly, the values of the original stimuli before and after

decoy introduction depend on the relative decoy value (Figure 4B

rightmost panel). This change is positive if the decoy is between

the two original options or close to them, and it is negative if the

decoy introduces a new minimum or maximum. Overall, the

change in the differential response depends on the representation

factors and decreases as the decoy becomes farther from the

original options. Interestingly, we found that the ratio of the

differential response after the decoy introduction to before the

decoy introduction is inversely proportional to the ratio of the

range of stimulus values after to before decoy introduction (see

Text S1). For this reason, we call our proposed mechanism for

neural adjustment the range normalization.

For the above simulations we assumed that adjustment to a new

set of stimuli is perfect such that the neural response in terms of

representation factors stay the same. However, it is possible that

due to biophysical constraints, this adjustment is not fully realized

(i.e. partial normalization) while neurons still represent each

stimulus with different responses. To incorporate partial range

normalization, we set the threshold and saturation points after the

introduction of the new stimulus to

~cc’t~ctzqr(~cct{ct) conditioned that ~cc’tvsn min

~cc’s~cszqr(~ccs{cs) conditioned that ~cc’swsn max

ð7Þ

where ~cct and ~ccs are the threshold and saturation points after the

decoy introduction as described by Eq.6, and qr is a quantity

between 0 and 1 that determines the degree of range normaliza-

tion. The extra conditions assure that all stimuli are represented

with different responses. If qr~0, the neural response is not range

normalized to the presentation of the new stimulus, and if qr~1,

the range normalization is complete. Examples of a partial range

normalization and the resulting change in the value of two original

options are shown in Figure 4C (for qr~0:25). These results

showed how the degree of range normalization could control the

decoy effects.

A limiting factor for neural responses to distinguish between

different stimuli is the ubiquitous noise in the nervous system [34].

The effects of noise on range normalization are beyond the scope

of this work, however, we considered a basic consequence of noise

inclusion in our range-normalization model. We assumed that in

order for the neural response to be distinguishable in the presence

of noise, the slope of neural response (k) could not be indefinitely

small. Therefore, we imposed an extra constraint on the neural

representation to prohibit the slope from becoming smaller than a

minimum value (kmin). By adding this constraint to the RN model

(see Methods for details), we found that the change in the

differential response to original options reaches a plateau when the

decoy is very far from the original options (Figure 4D). This

property is psychologically plausible, however, it cannot be tested

with our data since we did not use very far away decoys in our

experiment.
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Behavior and predictions of the RN model
So far, we have shown how decoy introduction changes the

neural response to original options based on how neurons

represent a given attribute. Here we demonstrate how decoy

introduction changes the preference between the original (T and

C) options as observed in our experiment.

We first show how range normalization results in the attraction

effect when a decoy that asymmetrically dominates T (but no C) is

Figure 4. Neural representation before and after decoy introduction and its effect on the valuation process in the range-
normalization model. (A–D) Neural responses to the original options (marked with gray vertical dotted lines at 25 and 75 a.u.) for different values
of representation factors. (E) Neural representation after the decoy introduction in the RN model and resulting changes in the differential response to
T and C. In the left three panels, the decoys are presented at 10, 35, and 110, respectively (marked with black vertical lines). The most right panel
shows the change in the differential response to original options after and before decoy introduction as a function of the decoy value, D. The
representation factors are the same as in D. (F) Neural representation after decoy introduction in the RN model with partial adjustment and resulting
changes in the differential response to T and C. Conventions are the same as in E. (G) Neural representation after decoy introduction in the RN model
with slope constraint (kmin~0:015) and resulting changes in the differential response to T and C. Conventions are the same as in E. Overall, the RN
model predicts changes in the differential response to original options before and after the decoy introduction which are larger when decoys
introduces a new maximum or minimum stimulus to the choice set and these effects increase with the distance, but reach to a fix value when the
slope constraint is imposed.
doi:10.1371/journal.pcbi.1002607.g004
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introduced. The difference between option values before and after

decoy introduction is equal to (using Eq.3)

V (T){V (C)~w1(r1(T1){r1(C1))zw2(r2(T2){r2(C2))~0 ð8Þ

~VV (T){ ~VV (C)~w1(~rr1(T1){~rr1(C1))zw2(~rr2(T2){~rr2(C2)) ð9Þ

where ~rri(Xi) is the neural response to option X after the decoy

introduction. By dividing the last equation by r1(T1){r1(C1) and

using Eq.8 we obtain

~VV (T){ ~VV (C)

r1(T1){r1(C1)
~w1(

~rr1(T1){~rr1(C1)

r1(T1){r1(C1)
)zw2(

~rr2(T2){~rr2(C2)

r1(T1){r1(C1)
)

~w1(
~rr1(T1){~rr1(C1)

r1(T1){r1(C1)
){w1(

~rr2(T2){~rr2(C2)

r2(T2){r2(C2)
)

~w1

~rr1(T1){~rr1(C1)

r1(T1){r1(C1)
{

~rr2(T2){~rr2(C2)

r2(T2){r2(C2)

� �

The first term in the last expression is less than one because the

decoy introduces a new maximum in dimension 1, and the second

term is larger than 1 as the decoy does not introduce a new

minimum nor a maximum in dimension 2 (see Figure 4).

Therefore, the sum of the parenthetical terms is negative so that
~VV (T){ ~VV (C)v0, which shows that decoy introduction makes C

preferred to T.

We then simulated change in preference due to decoy

introduction at different locations (see Methods for details). We

assumed that option attributes on a given dimension (e.g.

monetary value) are represented by a neural population selective

to that attribute (an attribute-selective population). The attribute-

selective populations in turn project to neural populations

representing the overall value of individual options (an option-

selective population). The strength of these projections determines

the weight of each attribute dimension on the overall value (Eq.3).

Subsequently, the outputs of the option-selective populations

project to a decision-making circuit, allowing the model to choose

between the available options.

Figure 5. Effects of the decoy on valuation in the range-normalization model. (A) Predicted change in the overall value of the target
( ~VV (T){V (T)) and its competitor ( ~VV (C){V (C)) as a result of decoy introduction at different locations of the attribute space. Conventions are the
same as in Figure 2A. For these simulations w1~w2~4, ft~0:2, and fs~{0:2 for both dimensions, and the slope constraint is imposed

(kmin~0:015). (B) The predicted difference between the values of target and competitor ( ~VV (T){ ~VV (C)) as a result of decoy introduction at different
locations of the attribute space. Conventions are the same as in Figure 2B. (C) Decoy efficacies for different decoys for two realizations of the RN
model: with representation factors equal to zero (diamonds), and with an asymmetric representation factors for the threshold and saturation
(squares): ft,1~0:2,fs,1~{0:2,ft,2~0:2 and fs,2~{0:2. The model with asymmetric representation factors shows moderate similarity effect, in
addition to the attraction and asymmetrically dominant decoy effects. (D) Inter-subject variability and dependence of decoy effects on the distance of
the decoy from the closest option. Decoy efficacy for each instantiation of the RN model at each decoy location is shown with a gray circle and the
average decoy efficacies are computed for all decoys (black diamond), close decoys (dark gray), and far decoys (light gray). Dashed lines are to guide
the eye and the error bars show the standard deviation. Overall, the RN model captures the attraction and asymmetrically dominant decoy effects
while it does not show significant similarity effect. Moreover, decoy efficacies are larger in magnitude for far decoys than close decoys. (E)
Anticorrelation between dominated and dominant decoy effects in the RN model. The average decoy efficacy for dominant and dominated decoys
are computed for the same set of simulations as in D. The dashed line shows the linear fit.
doi:10.1371/journal.pcbi.1002607.g005
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We found that the values of existing options are decreased or

increased depending on the location of the decoy. These changes

reach maximal values if the decoy is at a certain distance from the

existing options. (Figures 5A and 5B). The fact that decoy effects

do not increase indefinitely as the decoy becomes farther from the

original options is due to consideration of noise in the model.

For better comparison of the behavior of the RN model with the

CDA model and the experimental data, we calculated the average

models’ choice behavior for decoys at locations of the attribute

space that qualitatively match the experimental design (the same

as in Figure 5A). We found that similar to the CDA model, the RN

model captures attraction and asymmetrically dominant decoy

effects, but it does not capture similarity effects without including

asymmetry in the representation factors of the two attributes

(Figure 5C, and Figure S6 in Text S1). Interestingly, the behavior

of the RN with representation factors equal to zero is qualitatively

similar to the CDA model with loss-neutrality (Figure 3). In order

to address between-subject variability, we simulated the model

over a wide range of representation factors, and we found that

overall, average behavior of many simulated subjects with this

model follows the same trend as the model with zero represen-

tation factor (Figure 5D). However, in contrast to the CDA model,

the decoy effects were stronger for far decoys than for close decoys.

In addition, we found a significant anticorrelation between decoy

effects for the attraction and asymmetrically dominant decoys

(Figure 5E).

The CDA and RN models presented above, account for context

effects based on very different assumptions and premises, and

furthermore predict different patterns of decoy effects for far and

close decoys. More importantly, different mechanisms underlying

context effects in the presented models result in very different

predictions regarding the influence of the choice set size on these

effects, as described below.

Biophysical plausibility and set size
Although the CDA model captures most context effects, it is

unclear how computations required by this model could be

implemented biologically due to two main issues. First, in order to

compute the advantage and disadvantage, every pair of options in

the choice set should be compared. This causes a combinatorial

problem because as the choice set becomes larger the number of

required comparisons grows as N(N{1), where N is the number

of options in the choice set. Second, the CDA model asserts that

the introduction of each new option results in the addition of a

non-negative value to every available option in the choice set, and

therefore, as the number of options in a given choice set increases

the value of every option in that set increases. This implies that the

value of an option not only depends on other options in a given

choice set but also on the size of that set.

In order to illustrate the effect of the set size on the valuation in

the CDA model, we computed the value of an option at different

locations of the attribute space as a function of the number of

equally preferable options in the choice set. We found that option

value increases linearly with the number of options in the choice

set, in every location of the attribute space (Figure 6A). This is a

direct consequence of the fact that in the CDA model, the relative

advantage always adds a non-negative value to the overall value of

a given option. Therefore, the same option has a larger value when

it is part of a larger choice set (Figure 6B); in addition, the overall

value of the options in the choice set exponentially increases with

the choice set size (Figure 6C). The former suggests that the

difference between the values of two options in a given choice set

should grow as the set size increases, resulting in better value

discrimination in a larger choice set.

The underlying mechanisms for context effects, which rely of

pairwise comparison between all options in the choice set, imply

that required resources for computations of context effects should

increase supra-linearly with the choice set size. To demonstrate

this point, we used the network structure in the LCA model [24] to

calculate the required computational resource in the CDA model

or any of its equivalent neural models (see Methods for more

details). We found that computational resources also increase

exponentially with the choice set size (Figure 6D).

Finally, we explored the influence of the set size on the valuation

in the RN model by computing changes in valuation due to decoy

introduction for different number of options in the choice set

(Figure 6E). We found that choice set size does not have a

significant effect on valuation, and the overall value of the decoy

does not change with the choice set size (Figure 6F). Moreover, the

overall value of options in the choice set as well as the required

computational resources increase only linearly with the choice set

size (Figures 6G and 6H). These happen in our model because the

computations required for context effect do not require compar-

ison and only depend on the configuration of option values in

individual dimensions. Therefore, in contrast to the CDA model,

the RN model does not predict an increase in the option values as

the choice set size increases. These contrasting predictions of the

model can be tested in future experiments.

Table 1 summarizes the overall decoy effects predicted by the

CDA and RN models, and the actual effect sizes for different

decoy types. Most effects are in the predicted direction and are

significant. Note that the RN model correctly predicts both the

influence of distance on the decoy effects and the anti-correlation

between the effects for attraction and asymmetrically dominant

decoys.

Discussion

The prevalent influence of context on decision-making has long

been considered an ‘‘anomaly’’ against the normative account of

human choice behavior [35,36]. The reason is that normative

theories of choice typically assume that values are computed

independently for each stimulus, rather than comparatively. The

guiding metaphor for these normative theories of valuation and

choice is a naı̈ve theory of perception in which separate valued

objects are perceived as encapsulated units and then integrated by

a decision architecture. Of course, this view tends to disregard

decades of evidence about how the visual system uses top-down

encoding, neural adaptation and normalization, and gestalt

principles in integrating multiple percepts.

In this spirit, we propose that context effects are a natural

consequence of the biophysical limits of the neural processing in

the brain, as shown for other aspects of perception and choice [37–

39]. We construct a model for context effects based on plausible

biophysical mechanisms that enable neurons to efficiently adjust

their responses to the set of available stimuli. Both the effects of

context on neural representation and the normalization to the set

of stimuli have been extensively documented in auditory [40,41]

and visual domain [42–44], where neurons are required to

represent and encode external stimuli presented in very different

backgrounds. Moreover, adaptation is an efficient way for the

nervous system to adjust to variable statistics of the environment to

improve its local information capacity or discriminability power

[45–50].

In our model, we explored one possible class of neural

adjustments (range normalization) during valuation and choice

using two main assumptions. First, neurons utilize their entire

biophysical dynamic range to represent a set of stimuli. However,
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it is possible that neurons never reach to their maximum

biophysical firing rates and instead fire at medium rates under

many conditions (i.e. stimulus set). This only implies that the upper

representation factor, fs, should be positive (see Eq.5) and does not

qualitatively change the behavior of our model. Similarly, neurons

not representing any stimulus with zero firing rate only implies

positive values for the lower representation factor, ft. Second, we

assume that range normalization only depends on configuration of

Figure 6. Dependence of the context effects on the size of the choice set in the CDA and RN models. Conventions are the same as in
Figure 3 (A–D) Predictions of the CDA model. The overall value of an option in different locations of the attribute space is plotted for different choice
set size: (from left to right) zero or in the absence of context effects, two, four, and eight options. The option value monotonically increases with the
set size for any locations of the attribute space. (B) The average decoy value (over the attribute space) as a function of the choice set size in the
presence and absence of the context effects. For each point we average the decoy value over all locations of the attribute space in panel B. (C) The
average of the sum of option values in the choice set as a function of the choice set size. Conventions are the same as in B. The total options values
exponentially increases with the choice set size. (D) Required computational resources for the network counterpart of the CDA model. Conventions
are the same as in B. The computational resources required for context effects also exponentially grow with the choice set size. (E–H) Predictions of
the RN model. In the RN model, the range of possible values of an option does not depend on the choice set size. (F) The average decoy value as a
function of the choice set size. Conventions are the same as in B. The average decoy value does not depend on the choice set size. (G) The average of
the sum of option values in the choice set as a function of the choice set size. The overall value of options in the choice set only increases linearly with
the choice set size. Note the difference in scale in G and C. (H) Required computational resources for the RN model. In contrast to the CDA model,
computational resources required by the RN model only increases linearly with the choice set size.
doi:10.1371/journal.pcbi.1002607.g006
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the stimulus set and not the number of stimuli. Incorporating other

parameters into response-normalization mechanisms does not

contradict our proposal but it may change the resulting context

effects. Here we only consider one form of range normalization to

explain some of the basic effects of context on the choice

preference. Future works would explore the consequences of other

types of neural adjustments on the context-dependent choice

behavior (see below).

Interestingly, response normalization is not unique to sensory

neurons and processing, rather it seems to be a general property of

cortical computations [51,52]. A recent electrophysiological study

in primates has demonstrated that some neurons in the

orbitofrontal cortex (OFC) adapt their representation of the

economic values to the range of values during a given session [51].

To account for this observation, Padoa-Schioppa has proposed a

‘‘range adaptation model’’ in which the neurons adapt their

representation (by changing their sensitivity) to the range of values,

while their activity does not increase with the value range. In fact,

in some circumstances OFC neurons appear to encode the value

of the available options in a reference-dependent fashion by

representing the relative value of each option in the set [53] while

in other circumstance show invariance for changes of the menu

[54]. Our proposed range-normalization model is more general

than the range-adaptation model and differs from this model in

terms of the timescale on which adaptation or normalization takes

place. That is, only in a special case where the representation

factors are equal is the ratio of difference in response to original

options after the decoy introduction to before the decoy

introduction inversely proportional to the ratio of the range of

values after to before decoy introduction (see Text S1). However,

in the RN model, adjustment happens on every trial with three

options. In contrast, in the range-adaptation model, the range of

values on a given session controls the adaptation. It is highly

possible that we would also observe such adaptation on a larger

timescale (e.g. a session) if the option set changed between sessions.

Another recent study has shown that neurons in the lateral

intraparietal cortex (LIP) show context-dependent effects by

encoding the values of the saccade in the response field relative

to the value of all other alternative saccade movements [52]. The

authors used a divisive normalization model to account for their

experimental findings. More specifically, the response to the value

of the saccade in the receptive field is divided by the weighted

response of the saccadic values of all options presented in the

choice set, similarly to what has been proposed for sensory neurons

[55,56]. Therefore, due to divisive normalization, the value of

each given option is globally scaled by the value of all the

alternative options. In contrast, in our range-normalization model,

the representation of each attribute dimension depends on the set

of presented values, and not their sum (Figure 5B). Divisive

normalization can account for relative value coding but does not

predict any type of attraction effect because decoy introduction

always suppresses the response to the target and the competitors

without any change in the ranking of the options. However, it is

possible that our proposed range normalization and the divisive

normalization mechanisms play roles during different stages of

decision process. Range normalization operates at the early stage

of the decision process when cortical neurons have to represent

individual features of each option; while divisive normalization

operates at final stages (e.g. in LIP) when overall value associated

with different actions need to be represented to control the

selection processes (e.g. saccades).

A number of psychological models have used the attribute

comparison as the basic mechanism to account for attraction and

other decoy effects. The CDA model presented here was chosen as

an example of such models because it accounts for the attraction

and asymmetrically dominant decoy effects and provides testable

predictions due to its simple, yet clear mathematical formulation.

However, the CDA model or any other model that relies on

attribute comparison, suffers from a few important issues. Firstly,

such models predict that the values of all options increase (or at

least the best and worst option) as the choice set increases, which

implies that when presented as part of larger choice set options can

be differentiated easier than when they are presented in a smaller

set. This prediction is in contrast with experimental evidence

showing that discriminability between items decreases with the

increase of the data set [57], and that neural representation of

option values decrease as the number of alternatives increase [52].

Secondly, in such models, resources required for computation of

context effects exponentially increases with the choice set. The

CDA model also predicts that decoy effects are larger for closer

decoys. This is somehow counterintuitive as it predicts maximal

decoy effects for very similar but dominated decoys - while these

decoys should have little or no effect on the preference for the close

dominant option, as it might be hardly distinguishable.

Table 1. Predicted properties of the CDA and RN models, and associated empirical evidence.

Property Effect magnitude CDA prediction RN prediction

Effects of decoy types on choice of nearby option (decoy efficacy)

1 Asymmetrically dominant: D1, D4, overall 20.06*, 20.09*, 20.05* 2 2

2 Asymmetrically dominated: D3, D6, overall 0.11*, 0.05*, 0.07* + +

3 Similarity: D2, D5, overall 20.03, 20.08*, 0.03 0 0{

4 Difference in magnitude of decoy efficacy
of far and close decoys: D1, D4, D3, D6

0.20*, 20.01, 0.26*, 0.20* 2 +

5 Correlation of effects in rows 1 and 2 r = 20.57, p,0.008 2 2

New predictions

6 Computational demands as a function of the choice set size n/a Convex Linear

7 Choice value as a function of the choice set size n/a Exponential increase Invariant

Note:
*Denotes significant at p,0.05.
{The RN model shows weak similarity effects but this is ignored here for simplicity. Data for rows 1–3 is from Figures 1D and 2B; row 4 is from Figure 2A; and row 5 is
from Figure 2C. Results in row 6 and 7 are shown in Figure 6.
doi:10.1371/journal.pcbi.1002607.t001
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Recently, more sophisticated connectionist models have been

proposed to capture attraction and other context effects such as

the compromise and similarity effects. Two of such connectionist

models are the decision-field theory (DFT) [26] and leaky

competing accumulator (LCA) models [24]. While in both models

attention determines which attribute to be compared at the time,

these models rely on different mechanisms to account for attraction

effect. The DFT model relies on bi-directional distant-dependent

inhibition while the LCA model depends on the loss aversion.

However, because both the DFT and LCA models require attribute

comparison at some stages of processing (similar to the CDA model),

they both suffer from the combinatorial problem as the CDA model.

In contrast, our model that relies on range normalization of neural

responses, which is adjusted only once regardless of the number of

options, does not suffer from this issue.

There are other psychological models of context effects that do

not rely on attribute comparison as the basic mechanism. Most of

these models are based on heuristics and are not mathematically

well formulated. These include but are not limited to the so-called

weight-change, value-shift, and value-added models [21]. The

weight-shift model assumes that adding a new alternative changes

the relative weights of different attributes; it reduces the weight of a

given attribute if the range on that attribute is extended and

increases the weight if the number of different attribute values is

increased. The value-shift model on the other hand, assumes that

decoy changes the subjective evaluation of the attribute values,

mainly based on the relative position of decoy with respect to the

rest of options (as in range-frequency theory [58]). Finally the value-

added model assumes that decoy introduction adds values to

original options, which depend on the relational properties of the

decoy and each target. Our range-normalization model shares some

similarities with the value-shift model in a sense that it assumes that

the decoy value on a given attribute changes the value represen-

tation in that attribute independently of the other attributes.

However, for a limited case where representation factors are equal,

the effective weight of a given dimension is inversely proportional to

the range of values on that dimension (but there is no explicit

relationship to the frequency effects in weight-shift model). Despite

this similarity, our model relies on very different assumptions to

explain the decoy effects and generates a number of novel

predictions, while it is difficult to generalize the previous models

because of their lack of mathematical formalization.

Still another set of models, from economics and marketing [59–

61], assume that consumers are not sure what they prefer, but

those consumers infer reasonable preferences from what options

are available (as if mere option availability is advice). Decoys have

an influence because they shape the consumer’s idea of what might

be a good choice. Comparison of these models with the CDA, RN

and others is an interesting area for future research.

Context is a powerful modulator of how underlying prefer-

ences are constructed and choices are made, as documented by

many behavioral experiments and field studies [35,62]. At the

theoretical level, however, most of the attempts to account for

context effects have neglected the computational constraints

faced by the brain in order to compare choice options

characterized by several different attributes. In this paper we

show that considering plausible biophysical constraints of the

nervous system can indeed account for a few important aspects

of context effects. The range-normalization model we proposed

here has a reduced computational cost relative to competing

models and at the same time produces accurate empirical

predictions. More importantly, it enables us to connect plausible

biophysical constraints of neural representation to the biases in

the human choice behavior.

Methods

Ethics statement
All participants gave informed consent to participate according

to a protocol approved by the California Institute of Technology

Institutional Review Board.

Experimental paradigm and subjects
The experiment consisted of two parts in which subjects selected

between different monetary gambles. In the first part (estimation

task), the subject selected between two gambles with different

reward probabilities and magnitudes. We used subject’s choice in

this task to estimate his/her attitude toward risk and to tailor

equally preferred target (T) and competitor (C) gambles. In the

second part of the experiment (decoy task), we assessed the

preference between the target and competitor gambles in the

presence of a third gamble. The subjects were told to consider

every trial as equally important because at the end of the

experiment, only one trial would be randomly extracted and the

selected gamble on that trial would be played for real. To further

encourage subjects to pay attention to every trial, we deducted $1

from the final compensation for each missed response.

In total, 22 healthy Caltech male students (2264 years old) took

part in the study. One subject was excluded from the data analysis

since he showed an erratic pattern of gamble selection during the

estimation task. This was reflected in a poor fit of his choice

behavior - his sensitivity to reward magnitude, 1=sM , was 7 times

smaller than the mean of the group (see Figure S2 in Text S1 for

the distribution) - which prevented a reliable estimation of his

indifference point.

Estimation task
In the estimation task, we assessed individual subjects’ risk

attitude using selection between two monetary gambles. The

assessment procedure was an adaptation of the widely used

method for estimating the indifference point which was originally

developed by Holt and Laury [63]. Every subject completed four

equivalent sessions, each of which consisted of 40 trials. On each

trial, the subject had 4 seconds to evaluate two gambles while the

instruction message ‘‘Evaluate’’ was on the screen. After this

interval, the instruction message was changed to ‘‘Choose’’ and

the subject had 2 seconds to indicate their choice using a

keyboard. Each gamble was defined by two parameters (p, M),

probability p of winning a monetary reward of magnitude M, that

were presented on the screen with different colors. One gamble

was characterized by a small reward magnitude but a large reward

probability (low-risk or the target gamble). The other gamble had a

large reward magnitude but a small reward probability (high-risk

or the competitor gamble). We fixed the magnitude and probability

of the low-risk gamble (p = 0.7, M = $2062) while we varied the

magnitude of the high-risk gamble between $30 and $80 (p = 0.3,

M = $30–$80).

Decoy task
In the second part of the experiment, we tested how presence of

different decoy gambles influences the preference between the low-

risk and high-risk gambles. The low-risk gamble (T) was set to have

a magnitude M of $2062 and a probability p of 0.760.05. The

high-risk gamble (C) was set to have a probability p = 0.360.05

while its magnitude was tailored individually using the indifference

point from the estimation task, in order to have the subjects

indifferent between T and C. Finally, decoy gambles (D) were

designed to have a wide range of magnitude and probability values

(Figure 1). Specifically, we varied probability values of the decoy
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between 0.15 and 0.85, while we varied its reward magnitudes by

30% of the reward magnitude of the gamble closest to the decoy.

The task sequence was as follows. Three gambles (T, C and D)

were presented on the screen for 8 seconds (evaluation period)

while the ‘‘Evaluate’’ message was on the screen. The subjects

were told to evaluate the three gambles during this period. Once

the evaluation time was over, the message ‘‘Evaluate’’ was

changed to ‘‘Choose’’ and simultaneously, one of the three gambles

was randomly removed from the screen. The subjects then had

2 seconds to choose between the two remaining gambles by pressing

a keypad (selection period). The decoy task was conducted in the

MRI scanner (Siemens Trio); however, the fMRI data are neither

analyzed nor presented here as they are beyond the scope of this

paper. The main reason for not including the fMRI data here was

that none of the models presented in this paper generates

predictions that could be tested using BOLD-level signals.

On one third of the trials (catch trials), either C or T gambles

disappeared. These trials were included to avoid the subject from

predicting which gamble would disappear after the evaluation

period, and were subsequently excluded from the analysis. On the

remaining two thirds of the trials (regular trials), the decoy gamble

disappeared allowing us to study how the presence of this option in

the choice set influence the preference between C and T. Using this

design (i.e. phantom decoy design), we were able to examine the

effects of decoys that were preferred over C or T gambles. Finally,

we used a short choice period (2 seconds) to avoid subjects from

reevaluating the two remaining gambles. In fact, the only way to

perform this task efficiently was to rank the 3 gambles during the

evaluation period and to use this ranking at the choice period.

Debriefing after the study confirmed that a large majority of the

subjects used this ‘‘ranking strategy’’ which was also reflected in the

dependence of the RT on the decoy (Figure S7 in Text S1).

Range-normalization model
The range-normalization model consists of three layers of

neural populations: the attribute-selective, option-selective, and

decision-making populations. The attribute-selective layer consists

of two neural populations that represent the two attributes of the

options. The attribute-selective populations project to the option-

selective layer that consists of neural populations each of which

represents the subjective value of an option in the choice set. The

subjective values of options are determined by the weight of

connections from the attribute-selective layer to the option-

selective layer (Eq.3). Finally, the outputs of option-selective

populations project the corresponding populations in the decision-

making layer. The decision-making network is similar to what has

been previously used to simulate different reward-dependent

choice behaviors [37,64].

Here we were only interested in the outcome of decision-making

processes, therefore, we did not simulate the decision-making

network on every trial. Instead, we used a sigmoid function, which

has shown to describe the choice behavior of the decision-making

network very well [37,64], in order to compute the choice

probability for a given set of inputs to the decision network. More

specifically, the probability of selecting T, p(T), is equal to

p(T)~
1

1zexp {
wv(RT{RC)

s

� � ð10Þ

where RT and RC are the responses of option-selective populations

for target and competitor (Eq.3), wv is the strength of connections

from option-selective to decision-making populations, and s is a

model parameters which is determined by the architecture of the

decision-making network and the overall strength of its inputs

[37,64].

In order to obtain the neural response of attribute-selective

populations to a given stimulus set, we used Eq.6 to calculate the

threshold and saturation points. The threshold and saturation

points uniquely define the neural response through Eq.4. To

calculate the neural response after the decoy introduction, we first

identified the minimum and maximum, and next to minimum and

maximum stimuli in the stimulus set, and then we used Eq.6 to

compute the threshold and saturation points.

For simulations presented in Figure 4C, we used Eq.7 to

calculate partially adjusted threshold and saturation points. For

simulations presented in Figure 4D, an additional constraint for

the slope of neural response was imposed as follows. For a given

decoy location, we calculated the threshold and saturation points

from which the slope could be determined. If the slope was below

the minimum value (0.015 in simulations presented in this paper),

in a stepwise fashion we increased and decreased the values of

threshold and saturations points, respectively, until the slope value

became larger than the minimum slope value. In order to simulate

decoy effects in the two-dimensional attribute space, the same

procedure was applied on each attribute dimension independently.

For simulations presented in Figure 5D and Figure 5E, the

representation factors are selected from any combinations of

ft~f{0:2,{0:1,0,0:1,0:2gand fs~f{0:2,{0:1,0,0:1,0:2g for

each attribute dimension.

Finally, to calculate the required computational resource in our

model, we assumed that an addition of each option to the choice set

requires the engagement of one neural population to represent the

subjective value of the new option, which requires an additional

option-selective population. In contrast, in the network implanta-

tion of the CDA model, such as the LCA model, an addition of each

option requires the engagement of a few neural populations that are

required for comparison between each attribute of the new option

and the existing options. As a result, required computational

resources in CDA model increases with the number of options in the

choice set, N , as N(N{1). All simulations were performed using

custom-made codes in MATLAB.

Data analysis
For the statistical tests presented in the paper, we have provided

the conventional significant values in addition to the applied test.

In order to quantify the decoy effects, we used the overall

preference for the target gamble and the preference for the target

gamble for a given decoy to define the decoy efficacy, e(Di)

e(Di)~
pT (Di){pT

pT (Di)zpT

Based on this definition, the decoy efficacy is bound between 21

and 1. Note that using preference for C to define the decoy

efficacy gives similar results to what presented here.

Supporting Information

Text S1 A PDF file containing additional analysis of the CDA

and RN models, and the supplementary figures.

(PDF)
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