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Abstract

Previous studies showed that the understanding of others’ basic emotional experiences is based on a ‘‘resonant’’
mechanism, i.e., on the reactivation, in the observer’s brain, of the cerebral areas associated with those experiences. The
present study aimed to investigate whether the same neural mechanism is activated both when experiencing and attending
complex, cognitively-generated, emotions. A gambling task and functional-Magnetic-Resonance-Imaging (fMRI) were used
to test this hypothesis using regret, the negative cognitively-based emotion resulting from an unfavorable counterfactual
comparison between the outcomes of chosen and discarded options. Do the same brain structures that mediate the
experience of regret become active in the observation of situations eliciting regret in another individual? Here we show that
observing the regretful outcomes of someone else’s choices activates the same regions that are activated during a first-
person experience of regret, i.e. the ventromedial prefrontal cortex, anterior cingulate cortex and hippocampus. These
results extend the possible role of a mirror-like mechanism beyond basic emotions.
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Introduction

From the early stages of cognitive development, humans are

able to represent and understand others’ mental and emotional

states [1]. It has been suggested that the neural bases of this ability

may rely on the mirror mechanism [2,3]. The mirror mechanism

has been investigated in two major domains, i.e. sensorimotor and

emotional, involving two main circuits. One is located on the

lateral convexity of the cortex, and includes the inferior parietal

lobule (IPL) and the ventral premotor cortex plus the caudal part

of the inferior frontal gyrus (IFG). This circuit mediates the

understanding of gestures and meaningful actions [2,3]. The

second circuit, which includes the insula and anterior cingulate

cortex (ACC), is involved in the experiential understanding of

others’ emotional states shaping interpersonal relations at a basic

level [4–7].

Although there may be several ways in which others’ emotions

can be understood, recent studies indicate that one such

mechanism is based on the reactivation of the cerebral areas

associated with the observer’s direct emotional experience [6]. Yet,

neural mirror-responses have been assessed only in conditions

involving basic-level emotional stimuli, such as visual expressions

of disgust [5] or cues signaling pain [7]. As far as complex

emotions are concerned, to date there is only behavioral evidence

to suggest the involvement of a mirror-like mechanism in the

automatic understanding of others’ emotional states [8,9].

To further advance our understanding of complex emotional

processes, the present study investigates whether the understand-

ing of others’ negative emotions involves the activation of the same

neural mechanism as in the first-person experience. Specifically,

we investigated whether a neural resonance system is also engaged

in situations involving complex emotions that emerge at the

interface with high-level cognitive processing. To this purpose we

used regret, a cognitively-based emotion that occurs when one’s

outcome is worse than the outcome one would have obtained had

one made a different choice. Unlike basic emotions, regret stems

from the counterfactual comparison between alternative out-

comes, as when the chosen option in a gamble results in a negative

outcome compared with that of the unselected alternative [10]. The

possibility to quantify and evaluate the values associated with

unselected alternatives, resulting in better outcomes than the one

obtained, is crucial for regret to occur. Additionally, the emotion

of regret is elicited when the individual feels a personal

responsibility upon the outcome of her/his deliberate choice.

Without these prerequisites, regret would be replaced by the basic

emotion of disappointment.

Evidence that regret and disappointment are mediated by

neural structures only partially overlapping comes from clinical

[11] and brain imaging studies [12], that employed gambling to

assess the neural underpinnings of these emotions. These studies

showed that the experience of regret specifically involves the

activation of the medial orbito frontal cortex (mOFC) [11,12],

ACC and hippocampus [12].

In the present work, we extended the studies on regret by

investigating whether the same cortical areas involved in the first

person experience of regret become active also when the
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individual is faced with emotional experiences of regret in others.

Two fMRI studies testing mirror-like responses to regret were

carried out. In both studies, participants chose one of two gambles

resulting in real wins or losses, like in previous investigations

[11,12]. Unlike previous works, though, in the present studies the

participants also observed the same sequence of events (gambles

evaluation, decision, outcome evaluation), this time experienced

by another individual (see Figure 1).

As noted above, regret results from a sense of responsibility.

Therefore, to address specifically regret, as opposed to disappoint-

ment, in two control conditions a computer program randomly

chose one of the gambles for the participant or for the other

player. In these instances, the computer choices still resulted in real

monetary gains or losses for the players but, given the participants’

lack of responsibility upon the gamble selection, the game outcome

did not result in the feeling of regret [12].

The main difference between the two studies lies in the nature of

the participants’ task when presented with the outcomes obtained.

In the first study, we ensured that the participants’ emotional

reaction to the results of the gambles was consistent with the actual

counterfactual comparison between the obtained and unobtained

outcomes (i.e., satisfied or unsatisfied with the outcome). In this

way, we could also assess the participants’ understanding of the

other players’ emotional state at outcome evaluation during

‘‘Other Plays’’ condition. More precisely, the participants were

asked to indicate, after each trial, whether they were satisfied with

their own decision (‘‘I Play’’ condition) or whether, in their

opinion, the other player was satisfied with her/his decision

(‘‘Other Plays’’ condition). Although this response was necessary to

unfold the participants’ emotional coherence with the actual

outcomes in both IP and OP tasks, this type of judgment, by its

nature, is likely to prompt an emotional response in the beholder.

Since one requirement for a mirror response is its automaticity, to

make sure that the observed activations were not affected by the

explicit emotional appraisal of the gamble results, in the second

study participants were required to give a non-emotional

evaluation of the outcomes indicating whether results represented

a win or loss.

Finally, to shed light on the question of whether the engagement

of a resonance mechanism when attending someone else’s

experience of regret is affected by the individuals’ empathic

aptitude, we compared brain activations of females and males,

under the assumption that females are more empathic than males

[13].

Results

Study 1
The reported activations are based on the contrasts between the

conditions where the players (the participant or the actor) made

the decision versus the control conditions (IP minus IF; OP minus

OF). These contrasts aimed at controlling for activations merely

related to the carrying out of the tasks (e.g. visual, motor, etc.) and

to highlight those underlying regret, i.e. outcome evaluation when

one was responsible for her/his own choices. Behavioral measures

confirmed that participants paid attention to the outcomes of all

experimental conditions (see Text S1 for details).

In line with previous works on the neural correlates of regret

processing [12], a parametric analysis was carried out to highlight

the regions showing a positive linear relationship between regional

signal change and the objective amount of regret in the condition

‘‘IP minus IF’’ or ‘‘OP minus OF’’. Additionally, to investigate the

possible involvement of a resonance-mapping system for regret, we

focused on the common parametric effects across tasks, that is on the

cerebral regions activated both when experiencing regret (IP minus

IF) and when being aware of regret experienced by someone else

(OP minus OF) (see Tables S1–S3 and Figure S1 for the description

of the activated foci in the IP and OP tasks separately, as well as in

the formal direct comparisons between them).

The conjunction analysis between IP and OP statistical maps

(relative to IF and OF, respectively; p,0.001 uncorrected)

revealed significant common parametric activations in the left

Figure 1. Experimental conditions, Studies 1 and 2. From left to right, schematic depiction of the sequence of events in the conditions IP (‘‘I
play’’, top) and OP (‘‘Other plays’’, bottom). Within each condition there are 5 phases: instruction, evaluation of the wheels, choice of the gamble,
outcome evaluation and judgment of the outcome. In the depicted example, the participant chose the loosing wheel. The length in seconds of each
sub-event in the two studies is shown, in the inferior-most part of the figure.
doi:10.1371/journal.pone.0007402.g001

Mirroring Regret
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ventromedial prefrontal cortex (vmPFC), left amygdala and

bilaterally in the hippocampus (Table 1, Figure 2a). Common

parametric activations were also observed in the dorsal anterior

cingulate cortex (ACC), and in a cluster extending from the

supplementary motor area (SMA) to the middle cingulate cortex,

as well as in the right middle temporal gyrus.

To make sure that these results did not only reflect an emotional

response to a negative outcome per se, in a separate analysis we

investigated the regions where activity was related to disappointment

(i.e., win or loss in the chosen gamble, independent of the outcome

of the unselected one). Common parametric activations to IP and

OP tasks were observed in a number of areas including the left

postcentral gyrus, the parahippocampal gyrus bilaterally, thalamus

and brainstem periaqueductal grey matter (Table 2, Figure 3) but,

crucially, in neither vmPFC nor ACC.

Study 2
Like in study 1, here we carried out a conjunction analysis of the

parametric effects observed between IP (minus IF) and OP (minus

OF) conditions. This analysis confirmed the results of study 1, in

that mirror-like effects were found in the left ventromedial PFC

and dorsal anterior cingulate cortex (Table 3, Figure 2b). As far as

hippocampal activation is concerned, in study 2 we found a

stronger activation in the right hemisphere, as opposed to an

enhanced activation observed in the left hemisphere in study 1.

However, these results are not in conflict since, as it can be

observed from Figure S1, a parametric effect of regret was

observed in the right hippocampus in both IP and OP conditions

also in study 1, though the respective foci did not overlap. Finally,

a few differences were observed with respect to study 1, the most

notable being a lack of activation of the left amygdala.

Individual Empathy-Scores and Gender Effects
During a post-scanning session, participants had to complete an

Italian translation [14] of the Balanced-Emotional-Empathy-Scale

(BEES; [15]), a test assessing emotional empathy.

Behavioral data from the BEES showed that the mean scores for

our participants in study 1 were 34.83 (s.d. = 16.75) for females

and 19.33 (s.d. = 18.39) for males. These data were representative

of the normal Italian population (female mean = 37, s.d. = 18;

male mean = 21, s.d. = 18; [14]) and revealed a significant gender

difference, females being more empathic than males (Kolmogorov-

Smirnov test for normality: d = 0.091, p.0.2; two-sample t-test,

N = 24, t(22) = 2.15, p = 0.042).

Consistent with these results, direct gender comparisons carried

out in the parametric statistical maps of the third-person task (OP

minus OF) revealed stronger activations for females than males in

the ventromedial PFC, in ACC and in portions of the parietal

cortex bilaterally, including the somatosensory cortex and the

inferior parietal lobule (Table 4, Figure 4a).

These findings were confirmed in OP condition (minus OF) of

study 2, where enhanced activations for females with respect to

males were observed in the ventromedial PFC and somatosensory

cortex bilaterally (Table 5, Figure 4b). However, unlike study 1, an

enhanced activation for females was also observed in the anterior

insula bilaterally (Figure 4b). This result can be interpreted in

relation to the behavioral scores obtained on the BEES in study 2,

that not only showed a higher mean difference between females

and males than that observed in study 1, but also higher scores for

females with respect to those obtained by their peers from study 1

(females’ mean = 53.83, s.d. = 11.37; males’ mean = 23.08,

s.d. = 27.11; Kolmogorov-Smirnov test for normality: d = 0.19,

p.0.2; two-sample t-test, N = 24, t(22) = 3.62, p = 0.007).

Discussion

The aim of the present study was to investigate whether the

understanding of complex emotions, like regret, in others involves

the reactivation of the cerebral areas associated with the observer’s

direct emotional experience. Regret is a negative emotion arising

from a counterfactual comparison between the outcome of chosen

and discarded options, whereby the discarded option would have

produced higher benefits to the individual [10]. Regret thus requires

two conditions to occur: namely, the feeling of responsibility for the

decision made and a post-decisional evaluation of possible

unselected alternatives associated with better outcomes than the

one obtained. These two conditions define the emotional and

cognitive differences underpinning regret with respect to other

negative emotions like disappointment for a loss [12].

In this study we controlled for the effect of regret on cerebral

activity by means of methodological and statistical measures.

Methodologically, we dealt with the players’ feeling of responsi-

bility by comparing the conditions in which the participants

actively made a deliberate choice (IP, OP) with control conditions

in which choices were randomly made by the computer (IF, OF).

Statistically, we used a parametric analysis to investigate only those

areas whose activity showed a positive relation with increasing

levels of regret. Specifically, we modeled the difference between

the outcome of the chosen and unchosen gambles, so that also

positive outcomes could result in regret if compared to an even

more positive unselected outcome. Violation to these assumptions

(feeling of the responsibility and counterfactual evaluation) lead to

another emotional state, namely disappointment, even when faced

with the same amount of loss.

The neural correlates of regret processing have been previously

investigated using fMRI. These studies, carried out on healthy

Table 1. Study 1, parametric analysis of regret: conjunction IP
and OP conditions.

H Anatomical region (BA) MNI Z-score

x y z

IP (minus IF) and OP (minus OF)

L vmPFC (11) 214 46 214 3.62

L Anterior cingulate cortex (24/32) 28 38 12 3.31

R Anterior cingulate cortex (24/32) 2 38 12 3.32

L SMA (6) 0 28 58 3.28

L/R SMA (6) 4 214 52 3.39

R Middle cingulate cortex (6) 24 26 48 3.34

R Middle temporal gyrus (21) 58 210 218 3.40

L Amygdala 214 22 218 3.26

L Temporal pole (38) 228 4 220 3.47

Amygdala 224 0 220 3.32

L Hippocampus 232 234 212 3.61

R Hippocampus 32 210 232 3.53

Activations linearly and positively related to the objective amount of regret
(measured as the difference between the actual outcome and the outcome of
the unchosen gamble) in both the IP (minus IF) and OP (minus OF) conditions in
study 1 (p,0.001 uncorrected). H = Hemisphere, L = Left, R = Right,
BA = estimated Brodmann Area, vmPFC = ventromedial Prefrontal Cortex,
SMA = Supplementary Motor Area.
doi:10.1371/journal.pone.0007402.t001

Mirroring Regret
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Figure 2. Common parametric effects of regret in Studies 1 and 2. Activations linearly and positively related to the objective amount of regret
(measured as the difference between the outcomes of the chosen and unchosen gambles) in both the IP (minus IF) and OP (minus OF) conditions in
Studies 1 and 2 (Conjunction analysis; p,0.001 uncorrected). a) Study 1: representative sections from the MNI305 template brain. From left to right:
sagittal section showing activations in supplementary motor area (SMA), middle cingulate cortex and anterior cingulate cortex (ACC); horizontal
section showing activations in ventromedial prefrontal cortex (vmPFC) and hippocampus (HIP); horizontal section showing left amygdala and right
middle temporal gyrus activations. b) Study 1: from left to right, percent BOLD signal change (4 mm-radius sphere centered on the local maxima) in
the Anterior Cingulate Cortex (ACC), ventromedial prefrontal cortex (vmPFC) and Hippocampus (HIP) is shown for both ‘‘I Play’’ (IP, yellow) and ‘‘Other
Plays’’ (OP, blue) conditions. c) Study 2: representative sections from the MNI305 template brain. From left to right: sagittal section showing
activations in middle cingulate cortex and ACC; horizontal section showing activations in vmPFC and HIP; coronal section showing right HIP
activation. d) Study 2: from left to right, percent BOLD signal change in the same areas as in b).
doi:10.1371/journal.pone.0007402.g002

Mirroring Regret
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volunteers playing a gambling task similar to that employed in the

present experiments, showed that the experience of regret is

associated with the activation of OFC alongside structures

involved in cognitively-induced responses to aversive and painful

stimuli (ACC), and in declarative memory (hippocampal regions)

[12] (see also [11] below).

What distinguishes the present study from the previous ones is a

specific focus to the understanding of the experience of regret

when observing someone else experiencing it, i.e. a resonance

mirror effect that, to date, has been investigated only with basic-

level emotional stimuli. Among the studies addressing mirroring in

the emotional system, of particular interest is the fMRI study by

Singer et al. [7], where volunteers either experienced a painful

stimulus or observed a cue indicating that their loved one, present

in the same room, was receiving a similar stimulation. The areas

that were activated both when the volunteers were experiencing

pain and when they knew that the other individual was

experiencing it, were the anterior insula bilaterally and the

ACC. Similar results were reported also for disgust. As for pain,

feeling disgust or observing someone expressing it activates the

anterior insula and the ACC [5].

In line with these studies [5,7] (see also [16,17] and [6] for a

review), we focused on the common effects observed in the

cerebral regions that were activated both when experiencing regret

(IP minus IF) and when observing the regretful outcome of another

player (OP minus OF).

Our data on the parametric effects common to IP and OP tasks

(relative to baseline) in both studies 1 and 2 revealed several

activation foci including the ventromedial prefrontal cortex, the

dorsal anterior cingulate cortex (ACC) and hippocampus (Tables 1

and 3, Figure 2). These results confirm previous findings [12,18]

and, crucially, show that the activation of these regions also occurs

when participants observe the other player’s regretful outcomes. It

is worth noting that the results from study 1 revealed a modulation

of activity also in the amygdala that was not confirmed in our

second study. In this respect, it is likely that, in study 1, amygdala

activation was enhanced by the emotional nature of the judgment

provided by the participants, and lack of activation in study 2

shows that modulation of its activity is not specific for regret. This

lack of emotion-specificity is in contrast with vmPFC activation

that, on the other hand, is core to the expression of regret.

Largely on the basis of evidence coming from animal studies,

the medial portion of ventral prefrontal cortex is thought to be

associated with positive reward processing, as opposed to its lateral

part that instead is supposed to be involved in the processing of

negative stimulus valence [19]. However, several studies have

highlighted a more complex picture, according to which the

medial portion of ventral prefrontal cortex is engaged in the

processing of both positive and negative emotional events [20].

What the present and previous works strongly suggest, however, is

that not all types of emotion are associated with vmPFC activation;

rather there seems to be a specific involvement of this area in the

processing of complex emotions. A convincing evidence in this

respect comes from clinical studies, showing that patients with

medial PFC lesions that performed a gambling task similar to that

Table 2. Study 1, parametric analysis of disappointment:
conjunction IP and OP conditions.

H Anatomical region (BA) MNI Z-score

x y z

IP (minus IF) and OP (minus OF)

L Postcentral gyrus (2) 246 230 42 3.20

R Hippocampus 14 228 210 4.18

R Hippocampus 26 216 218 3.33

L Parahippocampal gyrus 218 222 218 4.07

L/R Thalamus/periacqueductal grey matter 0 224 10 4.13

L/R Cerebellum vermis 3 22 236 2 4.66

R Cerebellum (VI) 30 244 226 3.67

L/R Brainstem 26 220 226 3.99

Activations linearly and positively related to the objective amount of
disappointment (measured as the difference between the obtained and
unobtained outcomes of the chosen gamble) in both the IP (minus IF) and OP
(minus OF) conditions in study 1 (p,0.001 uncorrected). H = Hemisphere,
L = Left, R = Right, BA = estimated Brodmann Area.
doi:10.1371/journal.pone.0007402.t002

Figure 3. Common parametric effects of disappointment in Study 1. Shared effect of the parametric amount of disappointment (measured
as the difference between the actual and unobtained outcome of the chosen gamble) across IP (minus IF) and OP (minus OF) conditions in Study 1, as
shown by the results of a conjunction-analysis (p,0.001).
doi:10.1371/journal.pone.0007402.g003

Mirroring Regret
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employed in this study could not process the emotion of regret

elicited by the counterfactual comparison between the selected

outcome and those of unselected alternatives [11]. Notably,

however, those patients could exhibit emotional arousal to a loss

when the observation of post-decisional outcome did not induce

any counterfactual reasoning, i.e. disappointment.

These results confirm the view that vmPFC defines the emotional

value of the error given by the difference between the obtained

outcome and the unselected alternatives that, if chosen, would have

produced better results. This error, which emotionally results in the

negative feeling of regret, is a necessary drive for behavioral

reorganization. Anterior cingulate cortex uses information about

the emotional valence of unsuccessful behavior to re-organize future

choices accordingly [21]. In other words, the negative emotion

associated with regret is the basis of the motivation to workout

alternative solutions in response to the reoccurrence of future similar

situations. This motivation lacks in disappointment, where the

individual has no feeling of responsibility upon the outcome and is

powerless with respect to her/his loss.

Core of this study are the common effects observed between the

conditions IP and OP (after baseline subtraction), which indicate

that vmPFC-ACC and hippocampal activations mediate the

processing of regret not only when directly experienced, but also

when knowing that someone else is facing a counterfactual

negative outcome. More specifically, this finding shows that the

understanding of others’ regret is mediated by the reactivation of

the same core cerebral regions that induce the feeling of regret in

the beholder during a first person experience, hence supporting

the involvement of a resonance, mirror-like, mechanism in the

comprehension of the high-order emotion of regret when

experienced by others. Through this mechanism, others’ emo-

tional states are mapped onto the same areas that underlie ones’

own direct experiences, therefore allowing an automatic under-

Table 3. Study 2, parametric analysis of regret: conjunction IP
and OP conditions.

H Anatomical region (BA) MNI Z-score

x y z

IP (minus IF) and OP (minus OF)

L vmPFC (11/10) 210 42 210 4.26

L Lateral OFC/anterior insula (11/38) 226 16 220 3.98

L Anterior cingulate cortex (24/32) 214 34 14 3.28

R Middle cingulate cortex (24) 12 4 22 3.93

R Middle frontal gyrus (46) 46 44 18 3.80

Inferior frontal gyrus (45) 50 40 16 3.58

R Amygdala 28 212 212 3.28

Hippocampus 34 220 214 3.36

R Dorsal striatum 12 14 8 3.64

Activations linearly and positively related to the objective amount of regret in
both the IP (minus IF) and OP (minus OF) conditions in study 2 (p,0.001
uncorrected). H = Hemisphere, L = Left, R = Right, BA = estimated Brodmann
Area, vmPFC = ventromedial Prefrontal Cortex, OFC = OrbitoFrontal Cortex.
doi:10.1371/journal.pone.0007402.t003

Table 4. Study 1, parametric analysis of regret: direct gender-
comparisons in OP condition.

H Anatomical region (BA) MNI Z-score

x y z

a. OP minus OF: Females.Males

L vmPFC (11) 24 40 28 4.36

Anterior cingulate cortex (11/32) 212 42 14 3.43

L Supramarginal gyrus (2/40) 256 234 36 5.18

Inferior parietal lobule (2) 256 230 42 4.08

R Postcentral gyrus (2/1) 44 240 58 4.55

Inferior parietal lobule (2) 54 240 56 3.93

b. OP minus OF: Males.Females

L Hippocampus 240 218 216 4.75

L Hippocampus 228 214 232 3.86

R Hippocampus 40 222 212 4.63

R Hippocampus 30 212 226 5.02

Cerebral regions showing significant gender-effects related to the objective
amount of attended regret in the OP (minus OF) condition in study 1 (p,0.001
uncorrected). H = Hemisphere, L = Left, R = Right, BA = estimated Brodmann
Area, vmPFC = ventromedial Prefrontal Cortex.
doi:10.1371/journal.pone.0007402.t004

Figure 4. Differential parametric effects of gender on attended
regret in the ‘‘Other Plays’’ (OP) condition. The different linear
parametric effect of regret for female vs. male participants in Studies 1
(a) and 2 (b) (thresholded at p,0.001 uncorrected) in the OP (minus
OF) condition are shown on 3D-renderings and representative slices of
the MNI305 template brain.
doi:10.1371/journal.pone.0007402.g004

Mirroring Regret

PLoS ONE | www.plosone.org 6 October 2009 | Volume 4 | Issue 10 | e7402



standing of the cognitive/emotional states intrinsic to the complex

emotion of regret in others.

So far, there was only behavioral evidence to suggest that the

mere observation of a negative situation occurring to another

individual evokes in the observer the same mental processes as

those of the acting individual. These investigations assessed

counterfactual reasoning in social contexts by comparing reported

mental simulations of actors, readers and observers of different

situations all resolving negatively [8,9]. These studies showed that

actors (who made a decision and obtained a negative outcome)

and readers (who read a story describing the actor’s choice and

outcome) produce different counterfactuals by focusing attention

on different aspects of the situation [8]. However, when comparing

actors’ and observers’ counterfactuals, these studies show that

observers (who directly observed the actors’ negative resolving

situations) tend to mentally simulate alternative post-decisional

solutions to those situations as actors themselves do [9]. These

results suggest that, when faced with the negative outcome of

another person’s choices, individuals tend to react as they were

personally involved in that situation.

Attending another’s negative emotion, however, is a complex

phenomenon that can elicit different and conflicting reactions in the

beholder, as shown by two recent studies that have highlighted some

of the several facets related to the understanding of others’ emotions.

These studies have addressed individuals’ emotional responses

arising from direct social comparisons [22,23]. In Takahashi et al. [22],

experimental contexts were defined a priori so as to elicit in the

participants either the emotion of envy or gloating (schadenfreude).

fMRI technique allowed to associate these emotions to the

activation of dorsal ACC (envy) and of ventral striatum plus medial

OFC (gloating), supporting the view that OFC activation is not

specific for the processing of negative emotions. Bault et al., [23], on

the other hand, assessed the effects of one’s own and others’ previous

outcomes on choice behavior in a gambling task. The authors

observed that, when individuals played simultaneously on the same

trials, the emotional (as assessed trough skin conductance response

and heart-rate recording) and behavioral effects of envy and

gloating (when the players made different choices) are stronger than

the effects of regret and relief (when they made the same choices). In

other words, these data show that, in a direct social confrontation,

individuals’ choice behavior is more strongly affected by the feelings

of envy and gloating than by the emotions of regret or relief.

At a first glance, based on data from both these investigations,

one might argue that the neural activations observed in the present

study during ‘‘Other Plays’’ condition could relate to the emotion

of gloating for the other player’s misfortunes, rather than to regret.

However, several considerations speak against this interpretation.

Firstly, those studies were constructed so to elicit direct social

comparisons between individuals by either manipulating partici-

pants’ specific information or by having individuals playing on

same trials. In the present study, the effect of possible social

comparisons on the reported results was minimized. In fact,

participants played on different trials and, particularly in study 1,

the OP trials occurred immediately after the IP ones (direct social

comparison) statistically only in 1 out of 32 trials. Additionally,

outcomes producing the feelings of regret and relief were

counterbalanced, thus further reducing the effect of gloating also

when OP trials directly followed IP ones. Moreover, evidence that

our results are not spoilt by the effects of gloating is represented by

a lack of activation of the ventral striatum in OP task, which

Takahashi et al. [22] indicate as its neural signature. Nonetheless,

we do not reject the idea of possible different emotions, than

regret, ultimately arising from the individual’s awareness of

someone else’s regret. Still, our data clearly show that, in given

contextual frames, e.g. when direct social comparison is mini-

mized, and when individuals are aware of the process that leads to

regret in others, observers neurally respond as they were directly

involved in that situation. This neural process allows one to

cognitively and emotionally reproduce the feeling experienced by

a third person, thus leading to its automatic understanding.

A critical factor in the level of an individual’s shared experience is

her/his empathic aptitude. In this study, the behavioral results

obtained on the BEES showed higher scores for females than

males, particularly in study 2, suggesting that higher emphatic

aptitude is associated with enhanced activation observed for

females in vmPFC (see also [24]) and, only in study 2, in anterior

insula (see Tables 4 and 5, Figure 4). Enhanced vmPFC activation

for females during OP condition suggests that the engagement of

the ‘‘resonant’’ mechanism in the regret network is particularly

strong in emphatic individuals; insular activation, on the other

hand, appears to be not related to regret per se, rather it can be

more generally associated with the processing of emotional

empathic responses, as also shown in previous studies [5,7,17].

On the whole, our data suggest that the emotional understand-

ing of regret in others is specifically reflected by the activation of a

subset of the regions involved in its direct, first-person, experience.

Among these regions, vmPFC appears to be at the core of a

counterfactual evaluation of the outcomes, updating the emotional

valence of the obtained outcome with respect to that unobtained

[12]. This evaluation results in the appropriate behavioral

response associated with activity in ACC even when attending

another’s negative results. The finding of a resonance mapping

system for the high-order experience of regret entails an important

notion. In real social decisional contexts, one’s own decisions and

behaviors may be strongly influenced by interactive learning, i.e.,

learning from what other individuals experience as a result of their

choices [25]. One might then wonder how such learning occurs,

Table 5. Study 2, parametric analysis of regret: direct gender-
comparisons in OP condition.

H Anatomical region (BA) MNI Z-score

x y z

a. OP minus OF: Females.Males

L/R ACC/vmPFC (10/11) 26 48 0 3.57

L Medial OFC (11) 210 54 214 3.36

L Anterior insula/IFG pars orbitalis (47) 234 28 24 3.69

R Anterior insula/IFG pars orbitalis (47) 42 28 22 3.36

L SMA/Middle cingulate cortex (6) 214 222 52 3.53

L Postcentral gyrus (3b) 218 240 58 3.42

R Sensorimotor cortex (4a/1) 40 214 52 3.41

b. OP minus OF: Males.Females

L/R Middle cingulate cortex (23) 28 14 28 3.96

L/R Superior medial gyrus (9) 24 52 36 3.34

Cerebral regions showing significant gender-effects related to the objective
amount of attended regret in the OP (minus OF) condition in study 2 (p,0.001
uncorrected). H = Hemisphere, L = Left, R = Right, BA = estimated Brodmann
Area, ACC = Anterior Cingulate Cortex, vmPFC = ventromedial Prefrontal Cortex,
OFC = OrbitoFrontal Cortex, IFG = Inferior frontal gyrus, SMA = Supplementary
Motor Area.
doi:10.1371/journal.pone.0007402.t005
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i.e. how the negative, regretful, outcomes of other individuals are

coded in the decision-maker’s brain. Does such a process involve

the mere cold encoding of numerical quantities? The results of the

present study show that this is not entirely the case. Rather,

knowing the regretful outcomes of others’ choices do lead to

similar counterfactual comparisons and, via the reactivation of the

same underlying cerebral regions, to the comprehension of the

related emotional reactions, as experienced in a first-person

perspective. This resonant emotion may represent a drive for

behavioral reorganization even when attended in somebody else’s

experiences.

Materials and Methods

Study 1
Participants. Twenty-four healthy right-handed [26]

monolingual native speakers of Italian (12 females [mean

age = 25.75, s.d. = 2.18, range = 23.5–31.8] and 12 males [mean

age = 25.34, s.d. = 2.90, range = 22–29.7]) participated in study 1.

All participants had normal or corrected-to-normal visual acuity.

None reported a history of psychiatric or neurological disorders, or

current use of any psychoactive medications. They gave their

written informed consent to the experimental procedure, which

was approved by the Ethics Committee of San Raffaele Scientific

Institute.

Task. The participants performed a classical gambling task

[27]. In every trial, they were required to choose one of two

gambles depicted as ‘‘wheels of fortune’’, in which different

probabilities of financial gain or loss are represented by the relative

size of colored sectors of a circle. The gambles were then played

and the results shown. Participants could thus evaluate not only

the financial consequences of their decision, but also the outcome

they might have obtained had they selected the alternative gamble.

These evaluations gave them a sense of responsibility for their

choices and determined a counterfactual reasoning, i.e., the main

hallmarks of regret, when decisions produce relatively-negative

outcome.

In the present investigation, there were two basic experimental

conditions (see Figure 1). In the ‘‘I play’’ (IP) condition, participants

were asked to choose one of two gambles, leading to a financial

gain or loss for themselves. The gambles were shown for 5 s,

during which they could evaluate them and make a decision. Next,

the appearance of an asterisk in the centre of the screen prompted

the participants to choose, by pressing one of two buttons on a

keyboard with their right index or middle finger. The participants

had 2 s to choose the gamble. In case they did not answer within

this temporal window, they received an ‘‘out of time’’ message,

and a new trial started. Once selected, the chosen gamble was

highlighted by a white contour, and 3 s after the appearance of the

asterisk the outcome of both gambles was shown for 3 s. In the

‘‘Other plays’’ (OP) condition, the participants were shown the same

sequence of events (evaluation, decision and outcome, with the

same timings) of the gamble played by an actor in a nearby room.

In the OP condition, a small white square was shown along with

the asterisk, either on its left or right side. The asterisk position

indicated which gamble had just been chosen by the actor, and

participants were asked to press the corresponding button. In

order to focus their attention on the gamble-results in both IP and

OP conditions, and to assess the participants’ understanding of the

other players’ emotional state at outcome evaluation, after

outcome presentation the participants had to indicate whether

they were satisfied with their own result (IP) or whether the actor

was satisfied with her result (OP), by pressing one of two buttons

(left: yes, right: no; 3 s).

As an explicit-baseline, two further conditions were used: in the

‘‘I follow’’ (IF) and ‘‘Other follows’’ (OF) conditions, participants were

informed that the computer would randomly choose one of the

gambles, for themselves or for the other player, respectively. In

these conditions, the decision-period lasted 2 s. Like in the OP

condition, the decision made by the computer was signaled by a

small white square appearing along with the asterisk, and

participants were simply asked to press the corresponding left/

right button. These trials still resulted in financial gains or losses

for the participants or the actor, yet enabled us to control for the

feeling of responsibility for the gamble choice, which is a crucial

determinant of the emotion of regret.

Each trial started with a specific instruction indicating the

condition type (1 s), which remained at the bottom of the screen

throughout the trial length. All instructions were presented in

Italian.

Gambles structure. The participants underwent a total of

256 trials (64 for each experimental condition). The complete list

of trials was predetermined and identical for all the participants. In

each gamble, the 4 possible outcomes resulted from paired

combinations of 200, 50, 250 and 2200 (arbitrary units),

associated with 8 different levels of probability (30-70, 35-65, 40-

60, 45-55, 55-45, 60-40, 65-35, 70-30). Thus, the possible

combinations of wins and losses gave four potential levels of

regret (2100, 2150, 2250 and 2400) and relief (100, 150, 250

and 400). The possible combinations of payoffs and levels of

probability were equally balanced across all experimental

conditions. In each trial, payoffs and probabilities were

associated so that a) one of the gambles was riskier than the

other, and b) the difference between the gambles was minimized

with regard to the expected-value (i.e., the sum of the probability

of the two possible gamble outcomes, each multiplied by the

corresponding outcome value). In order to compare the effects of

different experienced vs. attended amounts of regret, it was crucial

to outbalance the number of events of interest across the different

experimental conditions. Therefore, unbeknownst to the

participants, the list of stimuli was arranged so that in OP, IF

and OF conditions every single trial resulted in a pre-determined

pair of outcomes (and thus in a pre-specified amount of either

regret or relief in the OP condition). In order to make sure that the

number of regret and relief events balanced out in the IP task

(where we had no control on the participant’s choice), every trial

was pre-determined to necessarily result in a variable amount of

either regret or relief by means of a feedback-routine. For every

task, the obtained ‘‘regret’’ and ‘‘relief’’ trials were then assigned to

the different functional runs so to obtain a variable proportion of

events of regret and relief. Crucially, to preserve a most realistic

probabilistic scenario, in all conditions we ensured that, across

trials, the least probable gamble outcomes would occur in a

proportion equal or inferior to 50% (OP = 47%; IF and

OF = 50%; IP = 42%). In fact, as confirmed by the post-

scanning debriefing, all participants were unaware of the

experimental control on the probabilistic occurrence of wins and

losses.

Instructions and procedure. The participants underwent a

training session and were introduced to the same unknown female

actor before the beginning of the study. Moreover, they were

informed that both their and the actor’s performance in IP/IF and

OP/OF tasks, respectively, would have resulted in a financial gain

or loss with respect to an initial endowment. Importantly, to

constrain a competitive attitude towards the actor’s performance,

participants were explicitly informed that their potential gains/

losses were completely independent of those of the other player.

Additionally, when introducing the actor to the participants, the
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actor’s personal profile was purposely kept very low. The

participants were informed about their cumulative earnings only

outside the scanner, after the functional acquisition.

The study was composed of 8 functional runs. Every run

comprised 32 trials (8 for each experimental condition). These

were randomly assigned to 8 blocks, each of which contained 4

consecutive trials of the same condition. The order of the

functional runs, of the blocks within each run and of the trials

within each block were randomized across participants. Null

events were also included in every run, to allow estimation of low-

level baseline brain activity. In order to desynchronize the timings

of event-types with respect to the acquisition of single slices within

functional volumes, interstimulus intervals (ISI) between successive

trials were presented in different (‘‘jittered’’) durations across trials

(1350, 1950, and 2550 s, in proportion of 4:2:1; [28]).

Visual stimuli were viewed via a back-projection screen located

in front of the scanner and a mirror placed on the head-coil. The

software Presentation 11.0 (Neurobehavioral systems, Albany, CA,

http://www.neurobs.com) was used both for stimulus presentation

and participants’ answers recording.

After the scanning, participants were asked to report their

personal impressions about the task. Then, they completed an

Italian version [14] of the Balanced Emotional Empathy Scale

(BEES; [15]), a 30-item questionnaire on emphatic abilities

designed to measure individual tendency to empathize with

others’ emotional experiences (i.e., emotional empathy).

Study 2: Differences with respect to study 1
Participants. Twenty-four healthy right-handed [26]

monolingual native speakers of Italian (12 females [mean

age = 20.28, s.d. = 1.16, range = 19–23] and 12 males [mean

age = 22.86, s.d. = 3.26, range = 19–30]) participated in study 2.

Task. Three main differences distinguished study 2 from

study 1 with regard to the task. Firstly, the emotional component

of post-outcome judgment was replaced by a ‘‘cold’’ appraisal of

the obtained outcome. Namely, instead of providing a satisfaction-

judgment, the participants were required to indicate whether the

gamble outcome was a win or a loss. Second, in study 2

participants’ response was required in all four conditions (IP, OP,

IF, OF) and only on 10% of the trials. Finally, the length of the

evaluation phase (gambles presentation) was identical in all four

conditions (4.5 s).

Gambles structure. Different from study 1, in each gamble

the 4 possible outcomes resulted from paired combinations of 200,

50, 250 and 2200 (arbitrary units), associated with only 3

different levels of probability (25-75, 50-50, 75-25). However, the

possible combinations of wins and losses still gave four potential

levels of regret (2100, 2150, 2250 and 2400) and relief (100,

150, 250 and 400).

Instructions and procedure. All participants underwent a

training session, and were introduced to an unknown actor. In

study 2, half of them (50% females and 50% males) were presented

to a female actor and the other half to a male actor.

fMRI data acquisition and statistical analysis.

Anatomical T1-weighted and functional T2*-weighted MR images

were acquired with a 3 Tesla Philips Achieva scanner (Philips

Medical Systems, Best, NL), using an 8-channels Sense head coil

(sense reduction factor = 2). Functional images were acquired using a

T2*-weighted gradient-echo, echo-planar (EPI) pulse sequence (38

interleaved coronal slices covering the whole brain, TR = 2200 ms,

TE = 30 ms, flip-angle = 85 degrees, FOV = 240 mm6240 mm,

inter-slice gap = 0.5 mm, slice thickness = 4 mm, in-plane

resolution 2.5 mm62.5 mm). Each scanning sequence comprised

215 sequential volumes. Immediately after the functional scanning a

high-resolution T1-weighted anatomical scan (150 slices,

TR = 600 ms, TE = 20 ms, slice thickness = 1 mm, in-plane

resolution 1 mm61 mm) was acquired for each participants.

Image pre-processing and statistical analysis were performed

using SPM5 (Wellcome Department of Cognitive Neurology,

http://www.fil.ion.ucl.ac.uk/spm), implemented in Matlab v7.4

(Mathworks, Inc., Sherborn, MA) [29]. The first 5 volumes of each

participant were discarded to allow for T1 equilibration effects. All

volumes were then spatially realigned [30] to the first volume of

the first session to correct for between-scan motion and unwarped

[31], and a mean-image from the realigned volumes was created.

This image was spatially normalized to the Montreal Neurological

Institute 305 (MNI305) brain template using a 12-parameter affine

normalization and 16 nonlinear iterations with 76967 basis

functions [32]. The derived spatial transformations were then

applied to the realigned-and-unwarped T2*-weighted volumes,

that were resampled in 26262-mm voxels after normalization. All

functional volumes were then spatially smoothed with an 8-mm

full-width half-maximum (FWHM) isotropic Gaussian kernel to

compensate for residual between-subject variability after spatial

normalization, and globally scaled to 100. The resulting time series

across each voxel were then high-pass filtered to 1/128 Hz, and

serial autocorrelations were modeled as an Auto-Regressive AR(1)

process.

Statistical maps were generated using a random-effect model,

implemented in a 2-levels procedure [33].

At the first level, two sets of analyses were performed. Firstly,

outcome trials were partitioned according to the 4 conditions (IP,

IF, OP, OF) which were separately modeled as mini-epoch lasting

3 s. For each of the 4 conditions, one additional regressor modeled

a linear parametric modulation of the outcome-related activity by

the degree of objective amount of regret/relief (computed as the

difference between the actual and unobtained outcomes). In line

with Coricelli et al.’s [12] procedure , in a second analysis we

modeled a linear parametric modulation by the degree of

satisfaction/disappointment, i.e., the amount of discrepancy between

the obtained and unobtained outcomes in the chosen gamble only.

All the within-trials events other than the outcomes, as well as

those trials in which a wrong response or no response was given,

were modeled in a single regressor of no interest. Regressors

modeling events were convolved with a canonical Haemodynamic

Response Function (HRF), and parameter estimates for all

regressors were obtained at each voxel by maximum-likelihood

estimation. Contrasts of parameter estimates were then calculated

to produce ‘‘contrast images’’ for each contrast of interest (‘‘IP

minus IF’’ and ‘‘OP minus OF’’ for both regret- and disappoint-

ment-related parametric regressors).

At the second (group) level, these two types of contrast-image

were used to perform separate parametric (i.e., dependent on the

degree of either regret or disappointment) analyses. Furthermore,

since we aimed at investigating also potential gender effects on

‘‘mirror-like’’ cerebral activity, the 1st-level contrast images for ‘‘IP

minus IF’’ and ‘‘OP minus OF’’ for male and female participants

were entered into a 262 [perspective (‘‘IP vs. OP’’) by gender

(female vs. male)] factorial design with sphericity-correction for

repeated measures [34]. Based on a-priori hypotheses from a

previous study [12], the resulting statistical maps were thresholded

at p,0.001 uncorrected for multiple comparisons, and only

clusters larger than 5 voxels were reported.

In order to assess common effects across IP and OP tasks, we

carried out a conjunction analysis on the IP (minus IF) and OP (minus

OF) statistical maps for both the disappointment- and the regret-

related parametric effects. This analysis was done using an inclusive

masking procedure, in which the statistical maps for OP conditions
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were inclusively masked by those for the IP condition. Finally, direct

comparisons were performed to assess perspective- and gender-

effects on condition-related cerebral activity in both analyses. The

resulting statistical maps were thresholded at p,0.001 uncorrected

for multiple comparisons and, in order to ensure that the observed

activations did not result from relative deactivations, they were

inclusively masked at p,0.05 uncorrected by those associated with

the conditions of interest minus the baseline task.

The location of the activation foci in terms of Brodmann Areas

(BAs) was determined in the stereotaxic space of Talairach and

Tournoux [35] after correcting for differences between the latter

and the MNI coordinate systems by means of a nonlinear

transformation (see http://www.mrc-cbu.cam.ac.uk/Imaging/

Common/mnispace.shtml). Those cerebral regions for which

maps are provided were also localized with reference to

cytoarchitectonical probabilistic maps of the human brain, using

the SPM-Anatomy toolbox [36].
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