
 
 

Moving Forward (and Beyond) the Modularity Debate. A Network Perspective 

1. Introduction. At least since Fodor’s (1983) The Modularity of Mind, the notion of 

modularity has been one of the most important concepts used to articulate an account of 

the human cognitive architecture. An account of the human cognitive architecture provides 

us with an encompassing theory (a “blueprint”) of the nature, arrangement, and form of the 

structures and processes that are responsible for cognition and adaptive behavior. This 

should be distinguished from a theory of the origins of cognitive architectures, which is 

concerned with the evolutionary and developmental history of the structures and processes 

that are responsible for cognition and adaptive behavior. 

 There has been little agreement on how the concept of modularity should be 

characterized, and on how we should study the extent to which the human cognitive 

architecture is modular. This disagreement has arguably hindered advancement in our 

understanding of the human cognitive architecture. There are two main reasons why 

researchers have often argued at cross-purposes in debates about modularity. First, 

different researchers have often used the term ‘modularity’ in significantly different ways 

(for discussion of different notions of modularity see Segal 1996; Samuels 2000). Second, 

questions about the nature, arrangement, and form of the structures and processes 

responsible for cognition have been often conflated with questions about the value and 

problems of (some form of) adaptationism as a view about the role of natural selection in 

the evolution of our cognitive traits, in the construction of explanations of our cognitive 

faculties, and in the definition of the goal of research on the evolution of such faculties (cf. 

the history of modularity in Barrett and Kurzban 2006, 628-629; or the exchanges between 



 
 

Fodor 2000, and Pinker 2005; between Lickliter and Honeycutt 2003a, 2003b, and Tooby, 

Cosmides and Barrett 2003; and between Buller 2005, and Machery and Barrett 2007). 

 Because of mere terminological disputes,
1
 vagueness surrounding putative central 

features of modularity such as functional specialization, domain specificity and 

informational encapsulation, and especially because of little agreement about the proper 

empirical methods for discovering and justifying the existence of candidate modules (cf. 

the controversy around the cheater-detection module: e.g. Fodor 2000; Sperber and Girotto 

2003; Cosmides and Tooby 2008a, 2008b; Fodor 2008), the modularity debate in the 

cognitive science and philosophy of psychology has often been frustratingly fruitless. If the 

debate could be moved forward and re-focused on substantive issues about our cognitive 

architecture, that would mark significant progress. 

 The goals of this paper are twofold. The first goal is to diagnose why the 

modularity debate risks to remain stagnant. The second goal is to suggest an effective 

remedy. Such a remedy is the theoretical framework of network science, which provides 

the basis of a more productive research program on the human cognitive architecture. 

Network science rests on bottom-up methods, which use large amounts of available and 
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 Twyman and Newcombe write: “Given this lack of agreed-upon definition, the 

modularity position becomes analogous to the Hydra, the many-headed monster that 

Heracles found difficult to combat because there were too many heads to take on 

simultaneously, and, worse, because other heads grew while he addressed a specific one” 

(2010, 1317). 



 
 

reliable data about brains, rather than on highly controversial methods, which partly draw 

on speculation about the evolutionary origins of cognitive mechanisms. 

 The paper is in four sections. In Section 2, I provide a critical overview of the two 

main accounts of modularity. These accounts have been respectively developed by Jerry 

Fodor, and by post-Fodorian researchers such as Clark Barrett, Peter Carruthers, Leda 

Cosmides, Robert Kurzban, Dan Sperber, and John Tooby. I explain why the notions of 

domain specificity and functional specialization as characterized within these two accounts 

do not facilitate theoretical and empirical progress. In Section 3, after having introduced 

the basics of networks science, I explain what modularity is from a network science 

perspective. I outline current methods for discovering modularity in systems of interest, 

and I argue that conceptual resources and methods from network science will help us move 

the modularity debate forward. In Section 4, I concisely review some of the evidence 

recently gathered within network neuroscience, about the modularity of the human 

cognitive architecture. Section 5 concludes. 

 A disclaimer about the scope of this paper is in order before moving on. 

Philosophers and many cognitive scientists have paid little attention to network science, 

and particularly to network neuroscience. It is not my aim to give a formal treatment of this 

field (see e.g. Rubinov and Sporns 2010). Nor is my aim to discuss in detail the theoretical 

and methodological foundations of network science. The paper will raise many 

questions—I shall be barely scraping the surface of this exciting field. Nonetheless, I hope 

to say enough about network science to convey philosophers and cognitive scientists a 

sense of the theoretical opportunities it affords, and of the problems it raises. 



 
 

 

2. What is a Module? Current philosophical and psychological literature includes two 

prominent types of characterizations of modularity: one put forward by Fodor’s (1983, 

2000), and the other shared by post-Fodorian accounts such as Carruthers’s (2006) and 

Barrett and Kurzban’s (2006). 

 According to Fodor (1983), there are nine features that collectively individuate 

modules: domain specificity, mandatory operation, limited central accessibility, fast 

processing, informational encapsulation, “shallow” outputs, fixed neural architecture, 

characteristic and specific breakdown patterns, and characteristic ontogenetic timetables. 

For my purposes, three points are noteworthy about Fodor’s account. First, Fodor is not so 

much concerned with the evidential status of the modularity of cognition: “This 

monograph—he writes—is about the current status of the faculty psychology program; not 

so much its evidential status (which I take to be, for the most part, an open question) as 

what the program is and where it does, and doesn’t, seem natural to try to apply it” (1983, 

1). So, Fodor’s focus is on the nature and scope of a particular research program in 

cognitive science, which he calls “faculty psychology.” This is “the view that many 

fundamentally different kinds of psychological mechanisms must be postulated in order to 

explain the facts of mental life” (Ibid., emphasis added). Second, Fodorian modules are 

intended to characterize a fragment of the human cognitive architecture. Fodor maintains 

that only peripheral (i.e. perceptual and motor) and linguistic systems are modular; the 

architecture of central systems supporting such cognitive capacities as reasoning and 

decision-making is instead non-modular (1983, 2000). Third, according to Fodor, a 



 
 

cognitive architecture counts as modular, if it is modular “to some interesting extent,” if it 

possesses most of the nine features singled out above to an appreciable degree (1983, 37). 

Hence, whether a cognitive architecture is modular (in Fodor’s sense) involves some 

vagueness. This vagueness is mitigated by the fact that some of the features of modularity, 

such as information encapsulation and domain specificity, are more important than others 

(Ibid.). If we find that a mechanism is informationally encapsulated and domain specific to 

some interesting extent, then we have good grounds to believe that it is a Fodorian module. 

 However, it is also a matter of degree whether a mechanism is informationally 

encapsulated or domain specific. For consider the definitions of an informationally 

encapsulated mechanism, and of a domain specific mechanism. A mechanism is 

informationally encapsulated to the extent that it is less open or permeable to information 

stored elsewhere in the system over the course of its processes. A mechanism is domain 

specific to the extent that it has a restricted subject matter. “[D]omain specificity has to do 

with the range of questions for which a device provides answers (the range of inputs for 

which it computes analyses)” (Fodor 1983, 103). From these characterizations, it is unclear 

to which extent a mechanism should be impermeable to information stored elsewhere in 

order to count as informationally encapsulated, and it is unclear how narrow the range of 

inputs that a mechanism can process should be for it to count as domain specific. Hence, 

both informational encapsulation and domain specificity are vague notions, which do not 

reliably help us to precisely identify modules. 

 More recently, many cognitive scientists, evolutionary psychologists, and 

philosophers have rejected Fodor’s notion of modularity. Barrett argues that Fodorian 



 
 

modularity “has been perhaps too influential, because it has foreclosed ways of thinking 

about modularity other than the very specific model [Fodor] proposed in his 1983 book” 

(2005, 260). Ermer, Cosmides and Tooby claim that “Fodor’s (1983) concept of a module 

is neither useful nor important” (2007, 153). Carruthers characterizes modularity by 

dropping some central features of Fodorian modules: “modules might be isolable function-

specific processing systems, all or almost all of which are domain specific, whose 

operations aren’t subject to the will, which are associated with specific neural structures 

(albeit sometimes spatially dispersed ones), and whose internal operations may be 

inaccessible to the remainder of cognition” (2006, 12). 

 Although there are differences between particular post-Fodorian accounts of 

modularity, most post-Fodorian theorists agree that modules should be understood as 

functionally specialized cognitive mechanisms (Barrett and Kurzban 2006; Carruthers 

2006; Coltheart 1999; Pinker 2005; Sperber 1994; Tooby and Cosmides 1992). 

Accordingly, to say that the human cognitive architecture is modular is to say that it 

consists of a number of isolable mechanisms specialized to carry out some function. A 

mechanism, in turn, can be understood as “a structure performing a function in virtue of its 

component parts, component operations, and their organization. The orchestrated 

functioning of the mechanism is responsible for one or more phenomena” (Bechtel and 

Abrahamsen 2005, 423). Hence, to say that a cognitive mechanism carries out some 

function is to say that it transforms some set of inputs into some set of outputs as a result of 

the organized set of operations performed by its component parts. It should be clear that 

the structural features of a mechanism—that is, the causal, spatial, and dynamical features 



 
 

of the components it comprises—are relevant to the function it carries out. In order to 

reliably identify the function carried out by some putative cognitive module, evidence 

about neuroanatomical and neurophysiological constraints can be relevant. 

 On this view, the defining feature of modular mechanisms is functional 

specialization. As Barrett and Kurzban put it, “functionally specialized mechanisms with 

formally definable informational inputs are characteristic of human (and nonhuman) 

cognition and… these features should be identified as the signal properties of 

‘modularity’” (2006, 630). Functional specialization concerns the types of processes 

carried out by a mechanism. A cognitive mechanism is functionally specialized to the 

extent that it carries out a restricted range of types of processes that successfully apply to 

certain problem domains—where domains are individuated by the formal properties of 

input representations to the mechanism (Ibid.). Accordingly, a module would be a 

specialized input-output mechanism that accepts inputs of a particular form, performs 

specialized transformations (or processes) on them, and yields outputs, whose format 

makes them usable for other cognitive mechanisms (cf. Barrett 2005, Section 3). 

 Two points are noteworthy here. First, this characterization involves some 

vagueness, since it does not answer the question of how many functions a mechanism 

should carry out for it to cease to be functionally specialized. Second, that a module is 

individuated in terms of its functional specialization does not imply that there is a single, 

distinct anatomical structure in the brain that is responsible for the processes carried out by 

the module. Modules can correspond to distributed circuits of neural networks that do not 

neatly map onto any single anatomical structure. 



 
 

 

2.1 Why Current Characterizations of Modularity Have Not Facilitated Progress. There is 

one important problem shared by Fodorian and post-Fodorian accounts of modularity. 

They do not offer reliable methods to identify either domain specificity or functional 

specialization in cognitive mechanisms. If domain specificity or functional specialization is 

essential to modularity, and we lack reliable ways to identify them, then we lack reliable 

ways to identify modules. If we lack reliable ways to identify modules, then the concept of 

modularity risks to hinder understanding and fruitful debate, rather than being a useful 

concept for articulating a theory of cognitive architecture. 

 The difficulty in identifying domain specificity and functional specialization partly 

depends on the vagueness of these two notions, which is acknowledged by both Fodor and 

post-Fodorian modularists. It also depends on the type of top-down methodology employed 

to define these features. This type of methodology—which I shall explain in a moment—is 

not directly concerned with using data and information from the brain sciences. To justify 

disregard for data and information from the brain science, it can be argued that modularity 

concerns a more abstract explanatory level than the level of neuroscience. Modularity 

would be a concept proprietary of the familiar Marr’s (1982) computational and 

algorithmic levels, which are supposedly unconstrained by evidence about the neural level 

of implementation. If modularity is a concept proprietary of such levels, then modular 

architectures in cognitive systems can be identified and studied, while remaining agnostic 

about how defining features of modularity such as functional specialization are 

implemented in the brain (cf. Barrett and Kurzban 2006, 642). 



 
 

 In contrast to this conclusion, one of the convictions that motivate this paper is that 

data and information from the brain sciences are relevant to developing an empirically and 

theoretically fruitful account of modularity, and, more generally, a theory of cognitive 

architecture. A theory of cognitive architecture should draw on available and reliable data 

about structural, anatomical, and neurophysiological features of the brain, which are likely 

the bases of a much more productive research program. 

 Three reasons can be given in support of this conviction. First, the view that an 

empirically and theoretically fruitful account of modularity can disregard data and 

information from the brain sciences relies on a misguided understanding of Marr’s (1982) 

three-level framework. Although in some passages Marr emphasises that “the three levels 

are only rather loosely related” (1982, 25), thereby suggesting some sort of autonomy 

between them, he also recognizes that accounts of particular cognitive capacities such as 

human vision should be ultimately assessed in terms of how well the computational and 

algorithmic specifications they include fit known neurobiological properties and details of 

the human visual system (1982, Ch. 3-4; see also Marr, Ullman and Poggio 1979, 916). 

Hence, Marr himself embraced a form of co-evolutionary research ideology, whereby 

concepts, models, and theories put forward at one level should be susceptible to correction 

and reconceptualization in light of discoveries, conceptual refinements, and methods 

available at some different level (Churchland 1986). 

 Second, both the Fodorian and most post-Fodorian accounts of modularity do refer 

to the brain sciences. For example, Fodor emphasises “the intimate association of modular 

systems with neural hardwiring,” and draws on “form/function correspondences” between 



 
 

certain patterns of neural connectivity and modularity to argue that input systems 

processes, but not central processes, are modular (e.g. Fodor 1983, 117-119). Sperber 

(1994, 40) defines a cognitive module as “a genetically specified computational device in 

the mind/brain.” Cosmides and Tooby (1995) refer to modules as “neurocognitive” 

adaptations. Carruthers sometimes refers to specific features of modularity as features of 

the “mind/brain,” and draws upon anatomical as well as neurophysiological evidence to 

make a number of arguments about the organization of the mind of non-human and human 

animals (2006, Chapter 2). This overview indicates that many cognitive scientists and 

philosophers working on modularity draw on information from the brain sciences because 

this information can be relevant to developing, and assessing an account of modularity. 

 Third, and more important, even if developing an account of modularity and, more 

generally, a theory of cognitive architecture without paying attention to data and 

information from the brain sciences might not be a hopeless project, it is a significant 

advantage if such a research program finds data and information from the brain sciences 

relevant. One should not profess agnosticism about the neural implementation of functional 

specialization, insofar as neural evidence is available that is relevant to constrain 

hypotheses about cognitive specializations. In fact, not every functional analysis of a 

system is equally adequate to play an explanatory role. And one way to assess the 

explanatory grip of a given functional analysis is to consider the extent to which it is 

informed by known facts about the human brain. This might not be the only way, but is 

useful and congenial to the development of a fruitful account of modularity. 



 
 

 I now turn to the methodology widely adopted by many cognitive scientists and 

philosophers to identify modularity. Fodor (1983) does not elaborate on it, partly 

because—as noted above—he is not much concerned with the evidential status of the 

modularity of cognition. Most of the post-Fodorian literature, instead, addresses the 

methodological issue of how we should study modularity within an adaptationist 

framework. A type of top-down, evolutionary/functional methodology is generally 

adopted. Accordingly, the basis for studying the architecture of the human cognitive 

system, and the extent to which it is modular consists in the identification of the types of 

computational problems that the human cognitive system faced over its evolution (Pinker 

1997; Tooby and Cosmides 2005).
2
 These kinds of problems, called adaptive problems, 

consist of situations such that different variants of some phenotypic trait contribute 

differently to reproductive fitness. The search for the structures and processes that can 

plausibly constitute our cognitive architecture is deferred until an adaptive problem—

which could be solved by the organized operations of those structures—is identified (see 

e.g. Barrett and Kurzban 2006; Cosmides and Tooby 1995). Pursuing this approach, 

domain specificity is defined in terms of sets of input stimuli characteristic of the adaptive 

problems faced by our ancestors (Barrett 2009; Carruthers 2006; Ermer, Cosmides and 
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 Buller explains this methodology thus: “Reverse engineering is a process of figuring out 

the design of a mechanism on the basis of an analysis of the tasks it performs. Evolutionary 

functional analysis is a form of reverse-engineering in that it attempts to reconstruct the 

mind’s design from an analysis of the problems the mind must have evolved to solve” 

(2005, 92). 



 
 

Tooby 2007; Sperber 1994). Functional specialization is defined similarly, in terms of 

adaptive problems solved by the cognitive systems of our ancestors. Accordingly, to say 

that a mechanism is functionally specialized is to say that it carries out a restricted range of 

types of processes that could solve the types of adaptive problems “that caused the 

propagation of its genetic basis relative to that of alternative mechanisms” (Ermer, 

Cosmides and Tooby 2007, 153). 

 If domain specificity and functional specialization are to be understood within an 

adaptationist framework, then some reliable way to individuate adaptive problems is 

necessary in order to identify modules in our cognitive architecture. However, the reliable 

individuation of adaptive problems is far from straightforward. It involves problematic 

methods, which have given rise to controversy about the status of evidence in evolutionary 

psychology used for establishing that a given cognitive mechanism is an adaptation, or is 

adaptive. Although the research program in evolutionary psychology is clearly not doomed 

a priori, it is currently very challenging to reliably test adaptationist hypotheses about our 

past and about the origins of our cognitive architecture (cf. Atkinson and Wheeler 2004; 

Buller 2005; Lloyd and Feldman 2002; Kaplan 2002; Richardson 2007; Schulz 2011; 

Sterelny and Griffiths 1999; Machery Forthcoming provides a more positive assessment of 

the status of evidence in evolutionary psychology). In the face of such methodological 

challenges, if the search for modularity mainly depends on our ability to individuate 

adaptive problems, and disregards the structural constraints and neurophysiological 

dynamical patterns that more apparently shape our cognitive architecture, then the worry 



 
 

that researchers are too unconstrained to suppose any module for any imaginary adaptive 

task becomes serious. 

 This worry should not suggest that an adaptive understanding of domain specificity 

and functional specialization is unimportant to articulating a full account of our cognitive 

architecture. My point is about the counter-productiveness of adopting a top-down 

evolutionary/functional analysis as the basis of a research program on modularity and 

cognitive architecture. If “the language of modularity affords useful conceptual 

groundwork in which productive debates surrounding cognitive systems can be framed”—

as claimed by Barrett and Kurzban (2006, 644)—then the utility of such a language in 

moving the debates forward will be greater if the notion of a module is not cashed out in 

adaptationist terms, but instead is understood within an evolutionarily-neutral framework. 

 Network science offers such a framework. Understanding modularity from a 

network science perspective can enable us to integrate neurophysiological and structural 

information about cognitive mechanisms, while freeing the notion of functional 

specialization from adaptationism. Concepts and methods from network science can make 

the language of modularity more conducive to productive theoretical and empirical debates 

about the form and organization of the architecture of cognitive systems such as the human 

brain. 

 

3. What a Module Is: A Network Science Perspective. The brain is a complex system 

composed of intricately interconnected, interacting elements. The organized activity of 

such elements is responsible for cognitive capacities and behavior. Network science offers 



 
 

a conceptual framework, methods, and a set of mathematical and statistical techniques, 

whereby we can understand the architectural organization of brain networks, and how such 

organization is responsible for cognition. 

 The explanatory targets of network science are complex networks and the 

phenomena they display. Complex networks can be engineered, biological, and social 

systems. In order to understand the organization of the structures and informational 

relationships that characterize complex systems, network science relies on concepts and 

methods from fields such as graph theory, statistics, information theory, machine learning, 

measurement theory, and dynamical system theory (Börner, Sanyal and Vespignani 2007). 

 Graph theory is the primary analytical framework used in network science. Graphs 

are sets of nodes and edges, which allow us to represent complex network systems such as 

the World Wide Web, mafia gangs, or the brain. Nodes represent elements, or components 

of the system. Edges represent connections between pairs of nodes. Edges can be directed 

or undirected, and they can be binary (i.e. they are either present or absent) or weighted 

(i.e. they can take on fractional values). Nodes can be connected directly by single edges, 

or indirectly by intermediate nodes and edges. Network measures include degree, strength, 

and centrality. Degree and strength of a node measure the extent to which the node is 

connected to the rest of the network. The degree of a given node is the number of 

connections that link the node to the rest of the network; a node with high strength makes 

strong connections—where strength is equal to the sum of connection weights. The 

minimum number of edges that must be travelled to go from one node to the other defines 

the path length between two nodes. The centrality of a node measures how many shortest 



 
 

paths between other parts of the network pass through that node. Nodes with high degree 

and high centrality are called “hubs.” Hubs are crucial for efficient communication 

between different nodes, as they facilitate global connectedness and integration of 

information within the network. All these measures refer to the topology of the network. 

So, two nodes of a network can be physically distant, but topologically close, as short path 

length between two nodes does not imply close physical proximity between them. 

 In cognitive science, network science is the basis of two main projects. The first 

project aims to describe the patterns of connectivity displayed by the multiscale networks 

that constitute nervous systems. The second aims to reveal the organizational principles 

behind the architecture of the networks of the brain understood as a type of information 

processing system. More generally, network neuroscience asks how brain networks, 

spanning the microscale of individual cells and synapses, and the macroscale of embodied 

and embedded cognitive systems, are responsible for cognition (Sporns 2011). 

 If we consider a graphical description of a brain network, network nodes can 

represent neural elements such as cells, populations of neurons, or cortical and subcortical 

regions, while network edges can represent structural connections between nodes such as 

synapses or axonal pathways. There are three modes of connectivity between the nodes 

comprised by a brain network. Besides structural connectivity, there are functional and 

effective connectivity (Sporns 2007). 

 Structural connectivity refers to the pattern of physical or anatomical connections 

linking neural elements. A representation of the structural connectivity of the brain 

corresponds to the “wiring diagram of the brain,” or connectome, which provides a map of 



 
 

the anatomical connections between neural structures (Sporns, Tononi and Kötter 2005). 

Functional connectivity refers to patterns of symmetrical statistical association between 

activities in different neural elements. Measured in terms of correlation or covariance, 

mutual information, or spectral coherence between activities in neural elements—

regardless of whether they are structurally connected—functional connectivity captures 

neurophysiological dynamics (Friston 1994). Information about functional connectivity 

tells us how activity in one neural node affects the correlations between activities in all the 

other nodes over time. A third mode of connectivity is effective connectivity, which refers 

to patterns of causal effects among neural elements. Measured through structural equation 

modeling, Granger causality, and other methods, it describes directed relationships 

between neurophysiological events (Friston 2011). 

 Information about these three modes of brain connectivity constitutes an important 

part of a theory of cognitive architecture. This should be obvious if we recognize that a 

theory of the architecture of a cognitive system should provide us with information about 

how the system is structured, and how the organized activity of its elements is responsible 

for cognitive phenomena and behavior. Information about structural, functional, and 

effective connectivity helps us describe the anatomical organization of the brain. It enables 

us to precisely identify the topological, statistical, and information-theoretical principles 

that might lie behind the architecture of a cognitive system such as the brain. Furthermore, 

information about these three types of connectivity advances our understanding of how 

certain causal transactions that take place among certain neural elements produce specific 

cognitive phenomena. 



 
 

 Bullmore and Sporns (2009, 187) outline four basic steps that are common to most 

approaches to identify brain networks: 

1. Define network nodes. 

2. Define edges. 

3. Represent the complete set of nodes and edges with a “connection matrix” that 

specifies which pairs of nodes are directly connected by an edge. 

4. Analyze the resulting network with appropriate network-theoretical tools. 

Each step requires researchers to make choices that will impact their results. This does not 

mean, however, that researchers’ choices are arbitrary, or that most results across studies 

are incoherent. Appropriate choices depend on the research question under investigation, 

on the researchers’ pragmatic ends and interests, on background knowledge of the system, 

and on available techniques. For example, if we consider the first step, appropriate 

parcellation of a given system into neural nodes can rely on histological, anatomical, 

electrophysiological, receptor distribution, or imaging data, depending on the research 

question and scale at which the researchers intend to investigate the system. At the level of 

large-scale brain system, nodes are better defined as coherent anatomical regions on the 

basis of prior anatomical criteria and functional imaging data (e.g. Cohen et al. 2008). 

Unsupervised, data-driven methods can be used to define and/or validate previously 

identified boundaries between coherent brain regions (Golland et al. 2008). The idea 

behind such data-driven methods is—very roughly—that nodes can be defined by 

searching sets of anatomical or imaging data for clusters of data, which emerge as coherent 

regions. 



 
 

 Analyses of several different types of brain networks, carried out with different 

techniques, have shown that some characteristic features of the human cognitive 

architecture can be detected with high reliability and robustness. One such feature is 

modularity. Modularity is topologically defined in terms of specific patterns of 

connectivity between neural nodes. Modules are “communities of nodes that share greater 

numbers of mutual connections within each community and fewer connections between 

them” (Sporns 2011, 113). 

 If you suspect that this notion is ridden with vagueness as much as the notions of 

modularity of the Fodorian and post-Fodorian accounts, this suspicion will be dispelled in 

a moment. Before turning to this issue, two aspects of modularity as characterized within 

network science are worth pointing out. First, in many complex systems, modularity is a 

property of architectures that span multiple scales. Many complex systems, including the 

brain, display the fractal property of hierarchical modularity, where “roughly the same 

kind of community structure is expressed repeatedly at different hierarchical levels or 

topological scales of the network” (Meunier et al. 2010, 2). Second, the distinction 

between structural, functional, and effective connectivity allows us to distinguish between 

structural, functional (i.e. statistical), and effective (i.e. causal) modularity. Based on 

patterns of structural connections in the system, structural modules consist of groups of 

densely anatomically interconnected nodes that are only sparsely connected with the rest of 

the network. Similarly, based on the patterns of statistical (and causal) dependencies 

displayed by the system, modules are individuated by clusters of densely functionally (and 

effectively) interconnected nodes. 



 
 

 Let us now examine how modules are identified in complex systems, and whether 

the network-scientific notion of modularity is as vague as the traditional notions. A system 

displays a modular architecture, if the nodes comprised by the system cluster in 

communities such that the nodes in each community are densely connected and the nodes 

between communities are sparsely connected. How dense? How sparse? There are a 

number of methods to answer these questions, each of which uncovers in an automated 

way the modules comprised by the system, quantifying how modular its architecture is (see 

Fortunato 2010, for a review). Each of these methods gives a precise answer to the 

questions about the number and size of modules in the system. These answers are not 

necessarily the same. Despite differences, however, most available methods yield coherent 

results that validate each other. 

 Currently, one of the most prominent measures of modularity has been developed 

by Newman’s (2006) (see also Newman and Girvan 2004). The basic idea is that the 

modularity of a network is identified on the basis of “the number of edges falling within 

groups [of nodes] minus the expected number in an equivalent network with edges placed 

at random” (Newman 2006, 8578). Modularity corresponds to “statistically surprising 

arrangement of edges” in the network (Ibid.). Network-scientific measures of modularity 

such as this, unlike the notions of modularity underlying Fodorian and post-Fodorian 

accounts, have received a mathematical formulation. Each of these measures is an 

objective method, whose assumptions are explicitly laid out, and can be independently 

evaluated in light of empirical results. 



 
 

 A characterization of modularity within network neuroscience has several 

advantages over the Fodorian and post-Fodorian accounts. First, the bottom-up and data-

driven methods used to identify and measure modularity make it a precise concept, and a 

quantifiable property, which can help us integrate information about different levels of 

organization in the brain. Second, the focus is on architectural features of our cognitive 

system, instead of on their origins, or on their being adaptations. Third, features such as 

functional specialization are not matters of stipulation, nor are they labelled in an intuitive 

manner; rather, they can be rigorously characterized and discovered, drawing upon 

network-theoretical analyses of patterns of brain connectivity. I conclude this section by 

articulating each claim in turn. 

 From a network-scientific perspective, modularity “is the result of an objective 

analysis of network connectivity and not based on intuitive or subjective classification 

criteria for network elements or on their intrinsic characteristics” (Sporns 2011, 113). 

Pursuing bottom-up, data-driven methodologies, network science eschews the use of 

concepts such as domain specificity and functional specialization to define modularity, 

whose vagueness makes it relatively more problematic to reliably identify modules. 

Bottom-up, data-driven methods deliver measurements of modularity, which quantify to 

what extent a given cognitive system is modular. Furthermore, a modularity analysis of 

connection datasets can provide us with a precise, quantitative characterization of the 

relationship between structural properties, and neurophysiological dynamics of a target 

brain network. While facilitating us to connect different levels of structural, functional, and 

causal organization in the brain, modularity analyses can also uncover whether certain 



 
 

organizational principles (e.g. topological efficiency, global efficiency of information 

transfer, robustness,…) are conserved “over different scales and types of measurement, 

across different species and for functional and anatomical networks” (Bullmore and Sporns 

2009, 196). 

 Second, from a network science perspective, whether the properties endowed by a 

modular architecture are adaptive, or evolved because of their fitness benefits to our 

ancestors are separate, secondary questions (Bullmore and Sporns 2012). The question 

“How modular is the brain?” is not the same question as “How many adaptations does the 

brain contain?” or “How functionally differentiated is the brain?” And these questions 

should not be conflated. 

 Although there is growing appreciation that a network analysis of the topological 

properties of a biological system is congenial to the study of the “evolvability” of the 

system (Wagner, Pavlicev and Cheverud 2007), network science by itself does not answer 

questions about the evolutionary forces by which modular architectures could be selected 

(Sporns 2011, Ch.7).
3
 Modular architectures, for example, have been shown to display 

robustness. Their topological properties tend to be resilient to perturbations such as the 

                                                           
3
 The “evolvability” literature does not have exactly the same definition of modularity as 

the network definition. According to this literature, a system is modular to the degree that 

different parts of it can be shaped independently by selection. Hence, modularity here is 

similar to the inverse of pleiotropy. Nonetheless, also this notion of modularity—where the 

relevant networks are genetic and epigenetic networks—can be understood within network 

science. Thanks to Clark Barrett for drawing my attention to this point. 



 
 

removal, or lesion of nodes or edges. Since systems that display a degree of robustness 

have been shown to possess a fitness advantage, the evolution of modularity might be 

linked to a topological property such as robustness (Wagner, Mezey and Calabretta 2005). 

However, network modularity and “evolvability” can diverge in their empirical 

implications. It is possible that a highly modular neural network does not exhibit a high 

degree of within-network evolvability, in the sense that evolutionary forces did not shape 

different parts of the neural network separately. 

 Similarly, within network neuroscience questions about the degree of modularity of 

the brain are distinguished from questions about the degree to which modules have been 

selected to carry out distinct functions. This is how it should be, since the answers to those 

questions are not necessarily the same. Barrett’s (2012) discussion of the relationship 

between increasing brain size, network-modularity, and the evolution of brain 

specializations illustrates this point nicely. Barrett considers two distinct (non-necessarily 

mutually exclusive) hypotheses (2012, 10737-10738). According to one hypothesis, the 

evolutionary force behind increasing brain size was selection for increased neural 

processing power. This could have led to increasing modularity purely as an architectural 

by-product of increasing network size. The resulting more modular brain is not necessarily 

more functionally differentiated, as the more modular architecture did not undergo 

selection for new specializations. According to another hypothesis, the evolutionary force 

behind brain increase was selection for increased specialization. “If the best way to 

produce new specialized regions is to increase brain size… then selection for specialization 

could have favored mutations that increased overall brain volume, thereby increasing 



 
 

modularity” (2012, 10737). In this case, but not in the former, a more modular brain is 

evidence for more functional differentiation/increased specialization. Examples such as 

this bear out that, while network neuroscience can be relevant to some questions about the 

origins of our cognitive architecture (by e.g. identifying organizational principles of 

complex brain networks, or neural wiring rules), it does not substitute for other approaches 

for those interested in those questions. 

 Finally, from a network perspective, features such as functional specialization, 

informational integration, and segregation are not matters of stipulation or of intuitive 

labeling. Especially within post-Fodorian/evolutionary psychologists’ accounts of 

modularity, intuitive labels such as “tool-use module” or “friendship module” have been 

used to characterize the function of many putative modules (Tooby and Cosmides 1992, 

113). One problem with this type of characterization is that it does not allow us to predict 

structures from functions, or functions from structures. Intuitive labeling does not allow us 

to predict what type of structural organization, or what type of topology a target 

mechanism will display, given knowledge of the cognitive functions it performs; and it 

does not help understand what types of cognitive functions a target mechanism can 

perform, given knowledge of its structural organization and topology. Part of the reason is 

that this type of labeling ignores all mode of neural connectivity, which can constrain and 

bootstrap functional ontologies for cognition (Bilder et al. 2009; Price and Friston 2005). 

 Let me single out a number of approaches, where network-theoretical analyses of 

connectivity, or measures such as modularity bear on our understanding of cognitive 

function. First, modularity and connectivity analyses provide grounds for distinguishing 



 
 

networks of the brain, which, in the investigation of structure-function relationships, can be 

regarded as more appropriate structural units than brain regions considered in isolation 

from the broader neural context (Klein 2012; McIntosh 2000). Hampshire et al. (2012), for 

example, addressed the question of whether human intelligence is a single unitary general 

ability or a set of multiple independent abilities, by relating different brain networks to 

population differences in performance in a range of cognitive tasks that could yield a 

measure of general intelligence (IQ). A data-driven method (exploratory factor analysis) 

was used to identify functional networks from whole-brain imaging data of participants 

who performed a battery of cognitive tasks. Reasoning, short-term memory, and verbal 

processing were respectively found to load most significantly on three distinct functional 

networks, which best explained cross-task correlations in performance in a larger 

population sample. The relationships between dissociable functional brain networks, 

specific cognitive abilities, and general intelligence scores could then be used to support 

the view that intelligence is not unitary. 

 According to a second approach, descriptions of structure-function relationships 

can be validated and constrained by examining the extent to which a given structural 

network exhibits similar neural dynamics (i.e. functional connectivity) in similar cognitive 

tasks. Passingham et al. (2002), for example, showed that each cytoarchitectonic area has 

unique patterns of cortico-cortical connections that reliably indicate differences in neural 

activity during distinct cognitive tasks. This type of evidence suggests that specific patterns 

of structural connectivity partly determine the types of processes carried out by a given 



 
 

structure, and thereby can afford constraints on the types of cognitive functions that the 

structure can perform. 

 Furthermore, information about functional connectivity can provide an independent 

test of whether a cognitive function is supported by a target structure. Different functional 

modular arrangements may be observed during different cognitive tasks, suggesting that 

“the flow of cognition is a result of transient and multiscale neural dynamics, of sequences 

of dynamical events that unfold across time” (Sporns 2011, 206). Changes in patterns of 

functional modularity are highly sensitive to the perturbations caused by sensory input, 

task-specific demands, or lesion. Functional connectivity of a target network can show 

dynamic changes in modularity predicted by experimentally controlled manipulations in 

some task. The evidence provided by the extent to which those dynamic changes track 

specific experimental manipulations bears on two questions. First, in which classes of tasks 

is the target structure involved? Second, to what extent do the processes carried out by the 

structure make a difference to whether some cognitive capacity is displayed? These 

questions are obviously important to describe structure-function relationships underlying 

functional ontologies for cognition (Friston and Price 2011). 

 While particular measures in a task can be associated with patterns of functional 

modularity (i.e. with sequences of dynamical events in the brain), functional networks 

maintain stable, global topological characteristics (Bassett et al. 2006). The persistence of 

global topological properties along with the peculiar dynamical-functional changes 

associated to certain sensory input or particular measures in a cognitive task afford insights 



 
 

about how the variety of cognitive phenomena are determined by the architecture of the 

networks of the brain (Sporns 2011, Ch. 8). 

 Further insights about structure-function relationships, and, particularly, about how 

modules relate to cognitive function, are provided by the organizational principles 

characteristic of certain types of architectures. Two such principles are “functional 

segregation” and “functional integration.” Modular architectures display a higher degree of 

locally segregated processing (or functional segregation), according to which different 

modules selectively capture different statistical regularities in their inputs—while their 

activities are statistically independent from each other. If a cognitive architecture displays 

a high degree of segregation, it will tend to display specialized local processing carried out 

by different modules, and little “cross-talk” between modules, which reduces both wiring 

costs and the propagation of noise in the global processing of the system. In light of 

segregation, a module’s functional specialization appears not only to be the result of the 

intrinsic biophysical properties of the module, but also of its extrinsic interactions within 

the network. “Specialization is not an intrinsic property of any region, but depends on both 

forward and backward connections with other areas”
 
(Friston and Price 2001, 275). 

Functional specialization, therefore, becomes meaningful only in the context of global 

features of networks’ connectivity. It cannot be identified by considering a target 

mechanism in isolation from the processes carried out by other mechanisms with which it 

interacts, and from the global features of the system in which it is embedded. Globally 

integrated processing (or functional integration) is another organization principle displayed 

in varying degrees by different types of architectures. If a cognitive system generates 



 
 

unified cognitive phenomena and coherent behavior, then relevant information processed 

by segregated modules must be integrated. Globally integrated processing can be achieved 

in a modular system courtesy of hub nodes, which can enable efficient communication 

between modules and integrate information processed locally, as well as of topological 

arrangements such as small-worldness, where high local clustering is combined with short 

paths that connect all nodes of the network facilitating direct cross-talk among several 

modules (Gallos, Makse and Sigman 2012). 

 Finally, information about modularity and modes of connectivity can be used to 

build neural models, which can offer testable hypotheses about structure-function 

relationships, while performing cognitive functions. Eliasmith et al. (2012), for example, 

built a 2.5-million-neuron model of the brain that could perform almost as well as humans 

at a number of tasks. One of the added-values of models such as this is that they offer a 

“set of hypotheses regarding the neural mechanisms and organization that may underlie 

basic cognitive functions” (2012, 1205). Part of the explanation for the success of this 

model is that its structural and functional connectivity embodies constraints motivated by 

information about real brains’ modularity and connectivity. The model captured several 

aspects of neuroanatomy and neurophysiology, and showed how they could give rise to 

different cognitive functions and adaptive behavior. 

 As highlighted by this discussion of network-centered approaches to understanding 

cognitive function, it may well be misguided to ask which module is necessary (and/or 

sufficient) for a particular cognitive task. The relationship between modularity and 

cognitive function should be studied in a context-sensitive way. More attention should be 



 
 

paid to the dynamic patterns of (structural, functional, and effective) connectivity of 

modules engaged in particular cognitive tasks, rather than to the cognitive function of 

individual modules. 

 

4. To What Extent the Human Cognitive Architecture is Modular. A growing number 

of studies of structural and functional connectivity in the human brain agree that our 

cognitive architecture comprises “a set of interconnected communities of structural and 

functionally related elements, arranged on multiple scales from cells to systems” (Sporns 

2011, 114). Among such communities, modular structures are prominent. Modules 

identified in the architecture of neural systems present common features: they are likely to 

share pathways, if they are spatially close; they are typically connected through hub nodes 

and naturally tend to form small-world arrangements. Here is a brief survey of the 

evidence. 

 Hagmann and colleagues (2008) analyzed the structural connectivity in the human 

cerebral cortex at high spatial resolution. They considered cortical networks of 998 brain 

regions of interest (with average size of 1.5 cm
2
) in six human subjects. Their modularity 

analyses revealed a set of regions of cortex that are highly central, and highly connected. 

This set of regions appears to form a structural core of the human brain. Six structurally 

distinct modules interconnected by highly central hubs were also identified. While the 

structural core was located predominantly within the posterior medial cortex, the six 

modules consisted of densely connected, spatially contiguous structures spanning frontal, 

temporoparietal, and medial cortical regions. The connector hubs that linked these modules 



 
 

were located along the anterior-posterior medial axis of the cortex, including the rostral 

and the caudal anterior cingulate, the paracentral lobule, and the precuneus. More fine-

grained analyses revealed additional hierarchically nested modular arrangements: two 

segregated clusters corresponding to the dorsal and ventral pathway were found in the 

visual cortex. 

 Chen and colleagues (2008) carried out a different modularity analysis of the 

structural connectivity of the human cortex at high spatial resolution, considering 45 

regions. They identified six modules, each of which comprised between four and ten 

cortical regions. These modules were located in anatomically distinct areas known to carry 

out processes supporting auditory/linguistic, strategic/executive, sensorimotor, visual, and 

mnemonic capacities. Chen and colleagues also identified several connector hubs, 

predominantly located in multimodal or association areas, which receive convergent inputs 

from multiple cortical regions. 

 Findings from studies on functional connectivity, adopting different methodological 

approaches, confirm the results concerning the multi-scale modular architecture of 

structural brain networks. Meunier et al. (2009), for example, studied the modular 

organization of functional networks under resting (i.e. no-task) conditions at several 

hierarchical levels. Their results show that functional networks in the human brain have a 

hierarchical modular organization. At the highest level of the hierarchy, they identified 

fewer and larger modules, including a somatosensorimotor module, a parietal module, and 

occipital modules. Hubs were identified in the association and cortical areas. At lower 



 
 

levels of the hierarchy, each of these larger modules was found to comprise several smaller 

sub-modules, and sub-sub-modules. 

 He et al. (2009) confirmed that functional networks of the human brain present a 

highly organized modular architecture. Consistent with previous findings, the modules they 

identified under resting conditions comprised somatosensory, motor, auditory, occipital, 

and parieto-frontal regions. Highly connected and highly central hubs were identified in 

the association and limbic/paralimbic area. He and colleagues also found that each of the 

modules they identified presented unique patterns of internal organization, which suggests 

that different modules at the same hierarchical level can present idiosyncratic network-

properties. 

 What does this brief survey indicate? Different network-scientific methods 

consistently show that both structural and functional brain networks display modularity. 

Modular networks are likely to involve nested hierarchies, ranging from coarse modules to 

more fine-grained ones, where different modules can present characteristic topological 

properties. Modularity appears to be a highly conserved organizational feature of the 

architecture of complex brain networks. 

 

5. Conclusion. I hope to have convinced you that network science provides a more 

rigorous and tractable concept of modularity than the Fodorian or post-Fodorian accounts, 

which portends to lead to significant insight into the topological organization of the human 

cognitive architecture, brain function, and possibly brain evolution. The theoretical 



 
 

framework of network science can be the basis of a more productive research program on 

the human cognitive architecture. 
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